Abstract:Sensor degradation poses a significant challenge in autonomous driving. During heavy rainfall, the interference from raindrops can adversely affect the quality of LiDAR point clouds, resulting in, for instance, inaccurate point measurements. This, in turn, can potentially lead to safety concerns if autonomous driving systems are not weather-aware, i.e., if they are unable to discern such changes. In this study, we release a new, large-scale, multi-modal emulated rain dataset, REHEARSE-3D, to promote research advancements in 3D point cloud de-raining. Distinct from the most relevant competitors, our dataset is unique in several respects. First, it is the largest point-wise annotated dataset, and second, it is the only one with high-resolution LiDAR data (LiDAR-256) enriched with 4D Radar point clouds logged in both daytime and nighttime conditions in a controlled weather environment. Furthermore, REHEARSE-3D involves rain-characteristic information, which is of significant value not only for sensor noise modeling but also for analyzing the impact of weather at a point level. Leveraging REHEARSE-3D, we benchmark raindrop detection and removal in fused LiDAR and 4D Radar point clouds. Our comprehensive study further evaluates the performance of various statistical and deep-learning models. Upon publication, the dataset and benchmark models will be made publicly available at: https://sporsho.github.io/REHEARSE3D.
Abstract:Wrist Fracture is the most common type of fracture with a high incidence rate. Conventional radiography (i.e. X-ray imaging) is used for wrist fracture detection routinely, but occasionally fracture delineation poses issues and an additional confirmation by computed tomography (CT) is needed for diagnosis. Recent advances in the field of Deep Learning (DL), a subfield of Artificial Intelligence (AI), have shown that wrist fracture detection can be automated using Convolutional Neural Networks. However, previous studies did not pay close attention to the difficult cases which can only be confirmed via CT imaging. In this study, we have developed and analyzed a state-of-the-art DL-based pipeline for wrist (distal radius) fracture detection -- DeepWrist, and evaluated it against one general population test set, and one challenging test set comprising only cases requiring confirmation by CT. Our results reveal that a typical state-of-the-art approach, such as DeepWrist, while having a near-perfect performance on the general independent test set, has a substantially lower performance on the challenging test set -- average precision of 0.99 (0.99-0.99) vs 0.64 (0.46-0.83), respectively. Similarly, the area under the ROC curve was of 0.99 (0.98-0.99) vs 0.84 (0.72-0.93), respectively. Our findings highlight the importance of a meticulous analysis of DL-based models before clinical use, and unearth the need for more challenging settings for testing medical AI systems.