Abstract:Altitude sickness is a potentially life-threatening condition that impacts many individuals traveling to elevated altitudes. Timely detection is critical as symptoms can escalate rapidly. Early recognition enables simple interventions such as descent, oxygen, or medication, and prompt treatment can save lives by significantly lowering the risk of severe complications. Although conventional machine learning (ML) techniques have been applied to identify altitude sickness using physiological signals, such as heart rate, oxygen saturation, respiration rate, blood pressure, and body temperature, they often struggle to balance predictive performance with low hardware demands. In contrast, hyperdimensional computing (HDC) remains under-explored for this task with limited biomedical features, where it may offer a compelling alternative to existing classification models. Its vector symbolic framework is inherently suited to hardware-efficient design, making it a strong candidate for low-power systems like wearables. Leveraging lightweight computation and efficient streamlined memory usage, HDC enables real-time detection of altitude sickness from physiological parameters collected by wearable devices, achieving accuracy comparable to that of traditional ML models. We present AMS-HD, a novel system that integrates tailored feature extraction and Hadamard HV encoding to enhance both the precision and efficiency of HDC-based detection. This framework is well-positioned for deployment in wearable health monitoring platforms, enabling continuous, on-the-go tracking of acute altitude sickness.