Abstract:This work explores using the physics-inspired AI Feynman symbolic regression algorithm to automatically rediscover a fundamental equation in astronomy -- the Equation of the Centre. Through the introduction of observational and inductive biases corresponding to the physical nature of the system through data preprocessing and search space restriction, AI Feynman was successful in recovering the first-order analytical form of this equation from lunar ephemerides data. However, this manual approach highlights a key limitation in its reliance on expert-driven coordinate system selection. We therefore propose an automated preprocessing extension to find the canonical coordinate system. Results demonstrate that targeted domain knowledge embedding enables symbolic regression to rediscover physical laws, but also highlight further challenges in constraining symbolic regression to derive physics equations when leveraging domain knowledge through tailored biases.
Abstract:Can a machine or algorithm discover or learn the elliptical orbit of Mars from astronomical sightings alone? Johannes Kepler required two paradigm shifts to discover his First Law regarding the elliptical orbit of Mars. Firstly, a shift from the geocentric to the heliocentric frame of reference. Secondly, the reduction of the orbit of Mars from a three- to a two-dimensional space. We extend AI Feynman, a physics-inspired tool for symbolic regression, to discover the heliocentricity and planarity of Mars' orbit and emulate his discovery of Kepler's first law.
Abstract:Can a machine or algorithm discover or learn Kepler's first law from astronomical sightings alone? We emulate Johannes Kepler's discovery of the equation of the orbit of Mars with the Rudolphine tables using AI Feynman, a physics-inspired tool for symbolic regression.