Abstract:Detecting vulnerable road users (VRUs), particularly children and adolescents, in low light and adverse weather conditions remains a critical challenge in computer vision, surveillance, and autonomous vehicle systems. This paper presents a purpose-built lightweight object detection model designed to identify young pedestrians in various environmental scenarios. To address these challenges, our approach leverages thermal imaging from long-wave infrared (LWIR) cameras, which enhances detection reliability in conditions where traditional RGB cameras operating in the visible spectrum fail. Based on the YOLO11 architecture and customized for thermal detection, our model, termed LTV-YOLO (Lightweight Thermal Vision YOLO), is optimized for computational efficiency, accuracy and real-time performance on edge devices. By integrating separable convolutions in depth and a feature pyramid network (FPN), LTV-YOLO achieves strong performance in detecting small-scale, partially occluded, and thermally distinct VRUs while maintaining a compact architecture. This work contributes a practical and scalable solution to improve pedestrian safety in intelligent transportation systems, particularly in school zones, autonomous navigation, and smart city infrastructure. Unlike prior thermal detectors, our contribution is task-specific: a thermally only edge-capable design designed for young and small VRUs (children and distant adults). Although FPN and depthwise separable convolutions are standard components, their integration into a thermal-only pipeline optimized for short/occluded VRUs under adverse conditions is, to the best of our knowledge, novel.
Abstract:Accurate power consumption prediction is crucial for improving efficiency and reducing environmental impact, yet traditional methods relying on specialized instruments or rigid physical models are impractical for large-scale, real-world deployment. This study introduces a scalable data-driven method using powertrain dynamic feature sets and both traditional machine learning and deep neural networks to estimate instantaneous and cumulative power consumption in internal combustion engine (ICE), electric vehicle (EV), and hybrid electric vehicle (HEV) platforms. ICE models achieved high instantaneous accuracy with mean absolute error and root mean squared error on the order of $10^{-3}$, and cumulative errors under 3%. Transformer and long short-term memory models performed best for EVs and HEVs, with cumulative errors below 4.1% and 2.1%, respectively. Results confirm the approach's effectiveness across vehicles and models. Uncertainty analysis revealed greater variability in EV and HEV datasets than ICE, due to complex power management, emphasizing the need for robust models for advanced powertrains.