Abstract:Automatic font generation (AFG) is the process of creating a new font using only a few examples of the style images. Generating fonts for complex languages like Korean and Chinese, particularly in handwritten styles, presents significant challenges. Traditional AFGs, like Generative adversarial networks (GANs) and Variational Auto-Encoders (VAEs), are usually unstable during training and often face mode collapse problems. They also struggle to capture fine details within font images. To address these problems, we present a diffusion-based AFG method which generates high-quality, diverse Korean font images using only a single reference image, focusing on handwritten and printed styles. Our approach refines noisy images incrementally, ensuring stable training and visually appealing results. A key innovation is our text encoder, which processes phonetic representations to generate accurate and contextually correct characters, even for unseen characters. We used a pre-trained style encoder from DG FONT to effectively and accurately encode the style images. To further enhance the generation quality, we used perceptual loss that guides the model to focus on the global style of generated images. Experimental results on over 2000 Korean characters demonstrate that our model consistently generates accurate and detailed font images and outperforms benchmark methods, making it a reliable tool for generating authentic Korean fonts across different styles.
Abstract:We present a physics-informed deep learning framework to address common limitations in Confocal Laser Scanning Microscopy (CLSM), such as diffraction limited resolution, noise, and undersampling due to low laser power conditions. The optical system's point spread function (PSF) and common CLSM image degradation mechanisms namely photon shot noise, dark current noise, motion blur, speckle noise, and undersampling were modeled and were directly included into model architecture. The model reconstructs high fidelity images from heavily noisy inputs by using convolutional and transposed convolutional layers. Following the advances in compressed sensing, our approach significantly reduces data acquisition requirements without compromising image resolution. The proposed method was extensively evaluated on simulated CLSM images of diverse structures, including lipid droplets, neuronal networks, and fibrillar systems. Comparisons with traditional deconvolution algorithms such as Richardson-Lucy (RL), non-negative least squares (NNLS), and other methods like Total Variation (TV) regularization, Wiener filtering, and Wavelet denoising demonstrate the superiority of the network in restoring fine structural details with high fidelity. Assessment metrics like Structural Similarity Index (SSIM) and Peak Signal to Noise Ratio (PSNR), underlines that the AdaptivePhysicsAutoencoder achieved robust image enhancement across diverse CLSM conditions, helping faster acquisition, reduced photodamage, and reliable performance in low light and sparse sampling scenarios holding promise for applications in live cell imaging, dynamic biological studies, and high throughput material characterization.