Abstract:The aim of extensive air shower (EAS) analysis is to reconstruct the physical parameters of the primary particle that initiated the shower. The TAIGA experiment is a hybrid detector system that combines several imaging atmospheric Cherenkov telescopes (IACTs) and an array of non-imaging Cherenkov detectors (TAIGA-HiSCORE) for EAS detection. Because the signals recorded by different detector types differ in physical nature, the direct merging of data is unfeasible, which complicates multimodal analysis. Currently, to analyze data from the IACTs and TAIGA-HiSCORE, a set of auxiliary parameters specific to each detector type is calculated from the recorded signals. These parameters are chosen empirically, so there is no certainty that they retain all important information and are the best suited for the respective problems. We propose to use autoencoders (AE) for the analysis of TAIGA experimental data and replace the conventionally used auxiliary parameters with the parameters of the AE latent space. The advantage of the AE latent space parameters is that they preserve essential physics from experimental data without prior assumptions. This approach also holds potential for enabling seamless integration of heterogeneous IACT and HiSCORE data through a joint latent space. To reconstruct the parameters of the primary particle of the EAS from the latent space of the AE, a separate artificial neural network is used. In this paper, the proposed approach is used to reconstruct the energy of the EAS primary particles based on Monte Carlo simulation data for TAIGA-HiSCORE. The dependence of the energy determination accuracy on the dimensionality of the latent space is analyzed, and these results are also compared with the results obtained by the conventional technique. It is shown that when using the AE latent space, the energy of the primary particle is reconstructed with satisfactory accuracy.
Abstract:The purpose of this paper is to review the most popular deep learning methods used to analyze astroparticle data obtained with Imaging Atmospheric Cherenkov Telescopes and provide references to the original papers.
Abstract:Imaging Atmospheric Cherenkov Telescopes (IACTs) of gamma ray observatory TAIGA detect the Extesnive Air Showers (EASs) originating from the cosmic or gamma rays interactions with the atmosphere. Thereby, telescopes obtain images of the EASs. The ability to segregate gamma rays images from the hadronic cosmic ray background is one of the main features of this type of detectors. However, in actual IACT observations simultaneous observation of the background and the source of gamma ray is needed. This observation mode (called wobbling) modifies images of events, which affects the quality of selection by neural networks. Thus, in this work, the results of the application of neural networks (NN) for image classification task on Monte Carlo (MC) images of TAIGA-IACTs are presented. The wobbling mode is considered together with the image adaptation for adequate analysis by NNs. Simultaneously, we explore several neural network structures that classify events both directly from images or through Hillas parameters extracted from images. In addition, by employing NNs, MC simulation data are used to evaluate the quality of the segregation of rare gamma events with the account of all necessary image modifications.