Massachusetts Institute of Technology
Abstract:CAD programs, structured as parametric sequences of commands that compile into precise 3D geometries, are fundamental to accurate and efficient engineering design processes. Generating these programs from nonparametric data such as point clouds and meshes remains a crucial yet challenging task, typically requiring extensive manual intervention. Current deep generative models aimed at automating CAD generation are significantly limited by imbalanced and insufficiently large datasets, particularly those lacking representation for complex CAD programs. To address this, we introduce GenCAD-3D, a multimodal generative framework utilizing contrastive learning for aligning latent embeddings between CAD and geometric encoders, combined with latent diffusion models for CAD sequence generation and retrieval. Additionally, we present SynthBal, a synthetic data augmentation strategy specifically designed to balance and expand datasets, notably enhancing representation of complex CAD geometries. Our experiments show that SynthBal significantly boosts reconstruction accuracy, reduces the generation of invalid CAD models, and markedly improves performance on high-complexity geometries, surpassing existing benchmarks. These advancements hold substantial implications for streamlining reverse engineering and enhancing automation in engineering design. We will publicly release our datasets and code, including a set of 51 3D-printed and laser-scanned parts on our project site.




Abstract:With the increasing adoption of metal additive manufacturing (AM), researchers and practitioners are turning to data-driven approaches to optimise printing conditions. Cross-sectional images of melt tracks provide valuable information for tuning process parameters, developing parameter scaling data, and identifying defects. Here we present an image segmentation neural network that automatically identifies and measures melt track dimensions from a cross-section image. We use a U-Net architecture to train on a data set of 62 pre-labelled images obtained from different labs, machines, and materials coupled with image augmentation. When neural network hyperparameters such as batch size and learning rate are properly tuned, the learned model shows an accuracy for classification of over 99% and an F1 score over 90%. The neural network exhibits robustness when tested on images captured by various users, printed on different machines, and acquired using different microscopes. A post-processing module extracts the height and width of the melt pool, and the wetting angles. We discuss opportunities to improve model performance and avenues for transfer learning, such as extension to other AM processes such as directed energy deposition.