Abstract:Accurate ECG interpretation is vital, yet complex cardiac data and "black-box" AI models limit clinical utility. Inspired by Transformer architectures' success in NLP for understanding sequential data, we frame ECG as the heart's unique "language" of temporal patterns. We present CardioPatternFormer, a novel Transformer-based model for interpretable ECG classification. It employs a sophisticated attention mechanism to precisely identify and classify diverse cardiac patterns, excelling at discerning subtle anomalies and distinguishing multiple co-occurring conditions. This pattern-guided attention provides clear insights by highlighting influential signal regions, effectively allowing the "heart to talk" through transparent interpretations. CardioPatternFormer demonstrates robust performance on challenging ECGs, including complex multi-pathology cases. Its interpretability via attention maps enables clinicians to understand the model's rationale, fostering trust and aiding informed diagnostic decisions. This work offers a powerful, transparent solution for advanced ECG analysis, paving the way for more reliable and clinically actionable AI in cardiology.
Abstract:This study presents TSLFormer, a light and robust word-level Turkish Sign Language (TSL) recognition model that treats sign gestures as ordered, string-like language. Instead of using raw RGB or depth videos, our method only works with 3D joint positions - articulation points - extracted using Google's Mediapipe library, which focuses on the hand and torso skeletal locations. This creates efficient input dimensionality reduction while preserving important semantic gesture information. Our approach revisits sign language recognition as sequence-to-sequence translation, inspired by the linguistic nature of sign languages and the success of transformers in natural language processing. Since TSLFormer uses the self-attention mechanism, it effectively captures temporal co-occurrence within gesture sequences and highlights meaningful motion patterns as words unfold. Evaluated on the AUTSL dataset with over 36,000 samples and 227 different words, TSLFormer achieves competitive performance with minimal computational cost. These results show that joint-based input is sufficient for enabling real-time, mobile, and assistive communication systems for hearing-impaired individuals.
Abstract:Creation of new annotated public datasets is crucial in helping advances in 3D computer vision and machine learning meet their full potential for automatic interpretation of 3D plant models. In this paper, we introduce PLANesT-3D; a new annotated dataset of 3D color point clouds of plants. PLANesT-3D is composed of 34 point cloud models representing 34 real plants from three different plant species: \textit{Capsicum annuum}, \textit{Rosa kordana}, and \textit{Ribes rubrum}. Both semantic labels in terms of "leaf" and "stem", and organ instance labels were manually annotated for the full point clouds. As an additional contribution, SP-LSCnet, a novel semantic segmentation method that is a combination of unsupervised superpoint extraction and a 3D point-based deep learning approach is introduced and evaluated on the new dataset. Two existing deep neural network architectures, PointNet++ and RoseSegNet were also tested on the point clouds of PLANesT-3D for semantic segmentation.
Abstract:Background modelling is a fundamental step for several real-time computer vision applications that requires security systems and monitoring. An accurate background model helps detecting activity of moving objects in the video. In this work, we have developed a new subspace based background modelling algorithm using the concept of Common Vector Approach with Gram-Schmidt orthogonalization. Once the background model that involves the common characteristic of different views corresponding to the same scene is acquired, a smart foreground detection and background updating procedure is applied based on dynamic control parameters. A variety of experiments is conducted on different problem types related to dynamic backgrounds. Several types of metrics are utilized as objective measures and the obtained visual results are judged subjectively. It was observed that the proposed method stands successfully for all problem types reported on CDNet2014 dataset by updating the background frames with a self-learning feedback mechanism.