Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"speech": models, code, and papers

Weakly-supervised word-level pronunciation error detection in non-native English speech

Jun 07, 2021
Daniel Korzekwa, Jaime Lorenzo-Trueba, Thomas Drugman, Shira Calamaro, Bozena Kostek

We propose a weakly-supervised model for word-level mispronunciation detection in non-native (L2) English speech. To train this model, phonetically transcribed L2 speech is not required and we only need to mark mispronounced words. The lack of phonetic transcriptions for L2 speech means that the model has to learn only from a weak signal of word-level mispronunciations. Because of that and due to the limited amount of mispronounced L2 speech, the model is more likely to overfit. To limit this risk, we train it in a multi-task setup. In the first task, we estimate the probabilities of word-level mispronunciation. For the second task, we use a phoneme recognizer trained on phonetically transcribed L1 speech that is easily accessible and can be automatically annotated. Compared to state-of-the-art approaches, we improve the accuracy of detecting word-level pronunciation errors in AUC metric by 30% on the GUT Isle Corpus of L2 Polish speakers, and by 21.5% on the Isle Corpus of L2 German and Italian speakers.

* Accepted to Interspeech 2021 

  Access Paper or Ask Questions

ON-TRAC Consortium for End-to-End and Simultaneous Speech Translation Challenge Tasks at IWSLT 2020

May 24, 2020
Maha Elbayad, Ha Nguyen, Fethi Bougares, Natalia Tomashenko, Antoine Caubrière, Benjamin Lecouteux, Yannick Estève, Laurent Besacier

This paper describes the ON-TRAC Consortium translation systems developed for two challenge tracks featured in the Evaluation Campaign of IWSLT 2020, offline speech translation and simultaneous speech translation. ON-TRAC Consortium is composed of researchers from three French academic laboratories: LIA (Avignon Universit\'e), LIG (Universit\'e Grenoble Alpes), and LIUM (Le Mans Universit\'e). Attention-based encoder-decoder models, trained end-to-end, were used for our submissions to the offline speech translation track. Our contributions focused on data augmentation and ensembling of multiple models. In the simultaneous speech translation track, we build on Transformer-based wait-k models for the text-to-text subtask. For speech-to-text simultaneous translation, we attach a wait-k MT system to a hybrid ASR system. We propose an algorithm to control the latency of the ASR+MT cascade and achieve a good latency-quality trade-off on both subtasks.


  Access Paper or Ask Questions

A non-causal FFTNet architecture for speech enhancement

Jun 08, 2020
Muhammed PV Shifas, Nagaraj Adiga, Vassilis Tsiaras, Yannis Stylianou

In this paper, we suggest a new parallel, non-causal and shallow waveform domain architecture for speech enhancement based on FFTNet, a neural network for generating high quality audio waveform. In contrast to other waveform based approaches like WaveNet, FFTNet uses an initial wide dilation pattern. Such an architecture better represents the long term correlated structure of speech in the time domain, where noise is usually highly non-correlated, and therefore it is suitable for waveform domain based speech enhancement. To further strengthen this feature of FFTNet, we suggest a non-causal FFTNet architecture, where the present sample in each layer is estimated from the past and future samples of the previous layer. By suggesting a shallow network and applying non-causality within certain limits, the suggested FFTNet for speech enhancement (SE-FFTNet) uses much fewer parameters compared to other neural network based approaches for speech enhancement like WaveNet and SEGAN. Specifically, the suggested network has considerably reduced model parameters: 32% fewer compared to WaveNet and 87% fewer compared to SEGAN. Finally, based on subjective and objective metrics, SE-FFTNet outperforms WaveNet in terms of enhanced signal quality, while it provides equally good performance as SEGAN. A Tensorflow implementation of the architecture is provided at 1 .

* 5 pages 

  Access Paper or Ask Questions

FaceFilter: Audio-visual speech separation using still images

May 14, 2020
Soo-Whan Chung, Soyeon Choe, Joon Son Chung, Hong-Goo Kang

The objective of this paper is to separate a target speaker's speech from a mixture of two speakers using a deep audio-visual speech separation network. Unlike previous works that used lip movement on video clips or pre-enrolled speaker information as an auxiliary conditional feature, we use a single face image of the target speaker. In this task, the conditional feature is obtained from facial appearance in cross-modal biometric task, where audio and visual identity representations are shared in latent space. Learnt identities from facial images enforce the network to isolate matched speakers and extract the voices from mixed speech. It solves the permutation problem caused by swapped channel outputs, frequently occurred in speech separation tasks. The proposed method is far more practical than video-based speech separation since user profile images are readily available on many platforms. Also, unlike speaker-aware separation methods, it is applicable on separation with unseen speakers who have never been enrolled before. We show strong qualitative and quantitative results on challenging real-world examples.

* Under submission as a conference paper. Video examples: https://youtu.be/ku9xoLh62E 

  Access Paper or Ask Questions

Detecting Emotion Primitives from Speech and their use in discerning Categorical Emotions

Jan 31, 2020
Vasudha Kowtha, Vikramjit Mitra, Chris Bartels, Erik Marchi, Sue Booker, William Caruso, Sachin Kajarekar, Devang Naik

Emotion plays an essential role in human-to-human communication, enabling us to convey feelings such as happiness, frustration, and sincerity. While modern speech technologies rely heavily on speech recognition and natural language understanding for speech content understanding, the investigation of vocal expression is increasingly gaining attention. Key considerations for building robust emotion models include characterizing and improving the extent to which a model, given its training data distribution, is able to generalize to unseen data conditions. This work investigated a long-shot-term memory (LSTM) network and a time convolution - LSTM (TC-LSTM) to detect primitive emotion attributes such as valence, arousal, and dominance, from speech. It was observed that training with multiple datasets and using robust features improved the concordance correlation coefficient (CCC) for valence, by 30\% with respect to the baseline system. Additionally, this work investigated how emotion primitives can be used to detect categorical emotions such as happiness, disgust, contempt, anger, and surprise from neutral speech, and results indicated that arousal, followed by dominance was a better detector of such emotions.

* 5 pages 

  Access Paper or Ask Questions

VarArray: Array-Geometry-Agnostic Continuous Speech Separation

Oct 26, 2021
Takuya Yoshioka, Xiaofei Wang, Dongmei Wang, Min Tang, Zirun Zhu, Zhuo Chen, Naoyuki Kanda

Continuous speech separation using a microphone array was shown to be promising in dealing with the speech overlap problem in natural conversation transcription. This paper proposes VarArray, an array-geometry-agnostic speech separation neural network model. The proposed model is applicable to any number of microphones without retraining while leveraging the nonlinear correlation between the input channels. The proposed method adapts different elements that were proposed before separately, including transform-average-concatenate, conformer speech separation, and inter-channel phase differences, and combines them in an efficient and cohesive way. Large-scale evaluation was performed with two real meeting transcription tasks by using a fully developed transcription system requiring no prior knowledge such as reference segmentations, which allowed us to measure the impact that the continuous speech separation system could have in realistic settings. The proposed model outperformed a previous approach to array-geometry-agnostic modeling for all of the geometry configurations considered, achieving asclite-based speaker-agnostic word error rates of 17.5% and 20.4% for the AMI development and evaluation sets, respectively, in the end-to-end setting using no ground-truth segmentations.

* 5 pages, 1 figure, 3 tables, submitted to ICASSP 2022; updated reference information of [33] 

  Access Paper or Ask Questions

The fifth 'CHiME' Speech Separation and Recognition Challenge: Dataset, task and baselines

Mar 28, 2018
Jon Barker, Shinji Watanabe, Emmanuel Vincent, Jan Trmal

The CHiME challenge series aims to advance robust automatic speech recognition (ASR) technology by promoting research at the interface of speech and language processing, signal processing , and machine learning. This paper introduces the 5th CHiME Challenge, which considers the task of distant multi-microphone conversational ASR in real home environments. Speech material was elicited using a dinner party scenario with efforts taken to capture data that is representative of natural conversational speech and recorded by 6 Kinect microphone arrays and 4 binaural microphone pairs. The challenge features a single-array track and a multiple-array track and, for each track, distinct rankings will be produced for systems focusing on robustness with respect to distant-microphone capture vs. systems attempting to address all aspects of the task including conversational language modeling. We discuss the rationale for the challenge and provide a detailed description of the data collection procedure, the task, and the baseline systems for array synchronization, speech enhancement, and conventional and end-to-end ASR.


  Access Paper or Ask Questions

Continuous Speech Separation with Conformer

Aug 13, 2020
Sanyuan Chen, Yu Wu, Zhuo Chen, Jinyu Li, Chengyi Wang, Shujie Liu, Ming Zhou

Continuous speech separation plays a vital role in complicated speech related tasks such as conversation transcription. The separation model extracts a single speaker signal from a mixed speech. In this paper, we use transformer and conformer in lieu of recurrent neural networks in the separation system, as we believe capturing global information with the self-attention based method is crucial for the speech separation. Evaluating on the LibriCSS dataset, the conformer separation model achieves state of the art results, with a relative 23.5% word error rate (WER) reduction from bi-directional LSTM (BLSTM) in the utterance-wise evaluation and a 15.4% WER reduction in the continuous evaluation.


  Access Paper or Ask Questions

Hate Speech Classifiers Learn Human-Like Social Stereotypes

Oct 28, 2021
Aida Mostafazadeh Davani, Mohammad Atari, Brendan Kennedy, Morteza Dehghani

Social stereotypes negatively impact individuals' judgements about different groups and may have a critical role in how people understand language directed toward minority social groups. Here, we assess the role of social stereotypes in the automated detection of hateful language by examining the relation between individual annotator biases and erroneous classification of texts by hate speech classifiers. Specifically, in Study 1 we investigate the impact of novice annotators' stereotypes on their hate-speech-annotation behavior. In Study 2 we examine the effect of language-embedded stereotypes on expert annotators' aggregated judgements in a large annotated corpus. Finally, in Study 3 we demonstrate how language-embedded stereotypes are associated with systematic prediction errors in a neural-network hate speech classifier. Our results demonstrate that hate speech classifiers learn human-like biases which can further perpetuate social inequalities when propagated at scale. This framework, combining social psychological and computational linguistic methods, provides insights into additional sources of bias in hate speech moderation, informing ongoing debates regarding fairness in machine learning.


  Access Paper or Ask Questions

<<
87
88
89
90
91
92
93
94
95
96
97
98
99
>>