Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"speech": models, code, and papers

Augmenting Part-of-speech Tagging with Syntactic Information for Vietnamese and Chinese

Feb 24, 2021
Duc-Vu Nguyen, Kiet Van Nguyen, Ngan Luu-Thuy Nguyen

Word segmentation and part-of-speech tagging are two critical preliminary steps for downstream tasks in Vietnamese natural language processing. In reality, people tend to consider also the phrase boundary when performing word segmentation and part of speech tagging rather than solely process word by word from left to right. In this paper, we implement this idea to improve word segmentation and part of speech tagging the Vietnamese language by employing a simplified constituency parser. Our neural model for joint word segmentation and part-of-speech tagging has the architecture of the syllable-based CRF constituency parser. To reduce the complexity of parsing, we replace all constituent labels with a single label indicating for phrases. This model can be augmented with predicted word boundary and part-of-speech tags by other tools. Because Vietnamese and Chinese have some similar linguistic phenomena, we evaluated the proposed model and its augmented versions on three Vietnamese benchmark datasets and six Chinese benchmark datasets. Our experimental results show that the proposed model achieves higher performances than previous works for both languages.

  Access Paper or Ask Questions

Addressing the Challenges of Cross-Lingual Hate Speech Detection

Jan 15, 2022
Irina Bigoulaeva, Viktor Hangya, Iryna Gurevych, Alexander Fraser

The goal of hate speech detection is to filter negative online content aiming at certain groups of people. Due to the easy accessibility of social media platforms it is crucial to protect everyone which requires building hate speech detection systems for a wide range of languages. However, the available labeled hate speech datasets are limited making it problematic to build systems for many languages. In this paper we focus on cross-lingual transfer learning to support hate speech detection in low-resource languages. We leverage cross-lingual word embeddings to train our neural network systems on the source language and apply it to the target language, which lacks labeled examples, and show that good performance can be achieved. We then incorporate unlabeled target language data for further model improvements by bootstrapping labels using an ensemble of different model architectures. Furthermore, we investigate the issue of label imbalance of hate speech datasets, since the high ratio of non-hate examples compared to hate examples often leads to low model performance. We test simple data undersampling and oversampling techniques and show their effectiveness.

  Access Paper or Ask Questions

Probabilistic Permutation Invariant Training for Speech Separation

Aug 04, 2019
Midia Yousefi, Soheil Khorram, John H. L. Hansen

Single-microphone, speaker-independent speech separation is normally performed through two steps: (i) separating the specific speech sources, and (ii) determining the best output-label assignment to find the separation error. The second step is the main obstacle in training neural networks for speech separation. Recently proposed Permutation Invariant Training (PIT) addresses this problem by determining the output-label assignment which minimizes the separation error. In this study, we show that a major drawback of this technique is the overconfident choice of the output-label assignment, especially in the initial steps of training when the network generates unreliable outputs. To solve this problem, we propose Probabilistic PIT (Prob-PIT) which considers the output-label permutation as a discrete latent random variable with a uniform prior distribution. Prob-PIT defines a log-likelihood function based on the prior distributions and the separation errors of all permutations; it trains the speech separation networks by maximizing the log-likelihood function. Prob-PIT can be easily implemented by replacing the minimum function of PIT with a soft-minimum function. We evaluate our approach for speech separation on both TIMIT and CHiME datasets. The results show that the proposed method significantly outperforms PIT in terms of Signal to Distortion Ratio and Signal to Interference Ratio.

* Interspeech 2019 

  Access Paper or Ask Questions

QUARC: Quaternion Multi-Modal Fusion Architecture For Hate Speech Classification

Dec 15, 2020
Deepak Kumar, Nalin Kumar, Subhankar Mishra

Hate speech, quite common in the age of social media, at times harmless but can also cause mental trauma to someone or even riots in communities. Image of a religious symbol with derogatory comment or video of a man abusing a particular community, all become hate speech with its every modality (such as text, image, and audio) contributing towards it. Models based on a particular modality of hate speech post on social media are not useful, rather, we need models like multi-modal fusion models that consider both image and text while classifying hate speech. Text-image fusion models are heavily parameterized, hence we propose a quaternion neural network-based model having additional fusion components for each pair of modalities. The model is tested on the MMHS150K twitter dataset for hate speech classification. The model shows an almost 75% reduction in parameters and also benefits us in terms of storage space and training time while being at par in terms of performance as compared to its real counterpart.

* Accepted in Proc. of the 4th International Workshop on Dialog Systems (IWDS2021) in conjunction with the IEEE BigComp2021 

  Access Paper or Ask Questions

Adverse Conditions and ASR Techniques for Robust Speech User Interface

Mar 22, 2013
Urmila Shrawankar, VM Thakare

The main motivation for Automatic Speech Recognition (ASR) is efficient interfaces to computers, and for the interfaces to be natural and truly useful, it should provide coverage for a large group of users. The purpose of these tasks is to further improve man-machine communication. ASR systems exhibit unacceptable degradations in performance when the acoustical environments used for training and testing the system are not the same. The goal of this research is to increase the robustness of the speech recognition systems with respect to changes in the environment. A system can be labeled as environment-independent if the recognition accuracy for a new environment is the same or higher than that obtained when the system is retrained for that environment. Attaining such performance is the dream of the researchers. This paper elaborates some of the difficulties with Automatic Speech Recognition (ASR). These difficulties are classified into Speakers characteristics and environmental conditions, and tried to suggest some techniques to compensate variations in speech signal. This paper focuses on the robustness with respect to speakers variations and changes in the acoustical environment. We discussed several different external factors that change the environment and physiological differences that affect the performance of a speech recognition system followed by techniques that are helpful to design a robust ASR system.

* International Journal of Computer Science Issues (IJCSI), 8(5), 440-449, 2011 
* 10 pages 2 Tables 

  Access Paper or Ask Questions

Dual-decoder Transformer for Joint Automatic Speech Recognition and Multilingual Speech Translation

Nov 02, 2020
Hang Le, Juan Pino, Changhan Wang, Jiatao Gu, Didier Schwab, Laurent Besacier

We introduce dual-decoder Transformer, a new model architecture that jointly performs automatic speech recognition (ASR) and multilingual speech translation (ST). Our models are based on the original Transformer architecture (Vaswani et al., 2017) but consist of two decoders, each responsible for one task (ASR or ST). Our major contribution lies in how these decoders interact with each other: one decoder can attend to different information sources from the other via a dual-attention mechanism. We propose two variants of these architectures corresponding to two different levels of dependencies between the decoders, called the parallel and cross dual-decoder Transformers, respectively. Extensive experiments on the MuST-C dataset show that our models outperform the previously-reported highest translation performance in the multilingual settings, and outperform as well bilingual one-to-one results. Furthermore, our parallel models demonstrate no trade-off between ASR and ST compared to the vanilla multi-task architecture. Our code and pre-trained models are available at

* The 28th International Conference on Computational Linguistics (COLING 2020) 
* Accepted at COLING 2020 (Oral) 

  Access Paper or Ask Questions

Low-Latency Speaker-Independent Continuous Speech Separation

Apr 13, 2019
Takuya Yoshioka, Zhuo Chen, Changliang Liu, Xiong Xiao, Hakan Erdogan, Dimitrios Dimitriadis

Speaker independent continuous speech separation (SI-CSS) is a task of converting a continuous audio stream, which may contain overlapping voices of unknown speakers, into a fixed number of continuous signals each of which contains no overlapping speech segment. A separated, or cleaned, version of each utterance is generated from one of SI-CSS's output channels nondeterministically without being split up and distributed to multiple channels. A typical application scenario is transcribing multi-party conversations, such as meetings, recorded with microphone arrays. The output signals can be simply sent to a speech recognition engine because they do not include speech overlaps. The previous SI-CSS method uses a neural network trained with permutation invariant training and a data-driven beamformer and thus requires much processing latency. This paper proposes a low-latency SI-CSS method whose performance is comparable to that of the previous method in a microphone array-based meeting transcription task.This is achieved (1) by using a new speech separation network architecture combined with a double buffering scheme and (2) by performing enhancement with a set of fixed beamformers followed by a neural post-filter.

  Access Paper or Ask Questions

The RoyalFlush System of Speech Recognition for M2MeT Challenge

Feb 03, 2022
Shuaishuai Ye, Peiyao Wang, Shunfei Chen, Xinhui Hu, Xinkang Xu

This paper describes our RoyalFlush system for the track of multi-speaker automatic speech recognition (ASR) in the M2MeT challenge. We adopted the serialized output training (SOT) based multi-speakers ASR system with large-scale simulation data. Firstly, we investigated a set of front-end methods, including multi-channel weighted predicted error (WPE), beamforming, speech separation, speech enhancement and so on, to process training, validation and test sets. But we only selected WPE and beamforming as our frontend methods according to their experimental results. Secondly, we made great efforts in the data augmentation for multi-speaker ASR, mainly including adding noise and reverberation, overlapped speech simulation, multi-channel speech simulation, speed perturbation, front-end processing, and so on, which brought us a great performance improvement. Finally, in order to make full use of the performance complementary of different model architecture, we trained the standard conformer based joint CTC/Attention (Conformer) and U2++ ASR model with a bidirectional attention decoder, a modification of Conformer, to fuse their results. Comparing with the official baseline system, our system got a 12.22% absolute Character Error Rate (CER) reduction on the validation set and 12.11% on the test set.

  Access Paper or Ask Questions

Incorporating Broad Phonetic Information for Speech Enhancement

Aug 13, 2020
Yen-Ju Lu, Chien-Feng Liao, Xugang Lu, Jeih-weih Hung, Yu Tsao

In noisy conditions, knowing speech contents facilitates listeners to more effectively suppress background noise components and to retrieve pure speech signals. Previous studies have also confirmed the benefits of incorporating phonetic information in a speech enhancement (SE) system to achieve better denoising performance. To obtain the phonetic information, we usually prepare a phoneme-based acoustic model, which is trained using speech waveforms and phoneme labels. Despite performing well in normal noisy conditions, when operating in very noisy conditions, however, the recognized phonemes may be erroneous and thus misguide the SE process. To overcome the limitation, this study proposes to incorporate the broad phonetic class (BPC) information into the SE process. We have investigated three criteria to build the BPC, including two knowledge-based criteria: place and manner of articulatory and one data-driven criterion. Moreover, the recognition accuracies of BPCs are much higher than that of phonemes, thus providing more accurate phonetic information to guide the SE process under very noisy conditions. Experimental results demonstrate that the proposed SE with the BPC information framework can achieve notable performance improvements over the baseline system and an SE system using monophonic information in terms of both speech quality intelligibility on the TIMIT dataset.

* to be published in Interspeech 2020 

  Access Paper or Ask Questions

CSS10: A Collection of Single Speaker Speech Datasets for 10 Languages

Apr 03, 2019
Kyubyong Park, Thomas Mulc

We describe our development of CSS10, a collection of single speaker speech datasets for ten languages. It is composed of short audio clips from LibriVox audiobooks and their aligned texts. To validate its quality we train two neural text-to-speech models on each dataset. Subsequently, we conduct Mean Opinion Score tests on the synthesized speech samples. We make our datasets, pre-trained models, and test resources publicly available. We hope they will be used for future speech tasks.

  Access Paper or Ask Questions