Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"speech": models, code, and papers

Multi Task Deep Morphological Analyzer: Context Aware Joint Morphological Tagging and Lemma Prediction

Nov 21, 2018
Saurav Jha, Akhilesh Sudhakar, Anil Kumar Singh

Morphological analysis is an important first step in downstream tasks like machine translation and dependency parsing of morphologically rich languages (MRLs) such as those belonging to Indo-Aryan and Dravidian families. However, the ambiguities introduced by the recombination of morphemes constructing several possible inflections for a word makes the prediction of syntactic traits a notoriously complicated task for MRLs. We propose a character-level neural morphological analyzer, the Multi Task Deep Morphological analyzer (MT-DMA), based on multitask learning of word-level tag markers for Hindi. In order to show the portability of our system to other related languages, we present results on Urdu too. MT-DMA predicts the complete set of morphological tags for words of Indo-Aryan languages: Parts-of-speech (POS), Gender (G), Number (N), Person (P), Case (C), Tense-Aspect-Modality (TAM) marker as well as the Lemma (L) by jointly learning all these in a single end-to-end framework. We show the effectiveness of training of such deep neural networks by the simultaneous optimization of multiple loss functions and sharing of initial parameters for context-aware morphological analysis. Our model outperforms the state-of-art analyzers for Hindi and Urdu. Exploring the use of a set of character-level features in phonological space optimized for each tag through a multi-objective genetic algorithm, coupled with effective training strategies, our model establishes a new state-of-the-art accuracy score upon all seven of the tasks for both the languages. MT-DMA is publicly accessible to be used at

* 30 pages, 7 figures, 9 tables 

  Access Paper or Ask Questions

A Neural Network Architecture Combining Gated Recurrent Unit (GRU) and Support Vector Machine (SVM) for Intrusion Detection in Network Traffic Data

Mar 10, 2018
Abien Fred Agarap

Gated Recurrent Unit (GRU) is a recently-developed variation of the long short-term memory (LSTM) unit, both of which are types of recurrent neural network (RNN). Through empirical evidence, both models have been proven to be effective in a wide variety of machine learning tasks such as natural language processing (Wen et al., 2015), speech recognition (Chorowski et al., 2015), and text classification (Yang et al., 2016). Conventionally, like most neural networks, both of the aforementioned RNN variants employ the Softmax function as its final output layer for its prediction, and the cross-entropy function for computing its loss. In this paper, we present an amendment to this norm by introducing linear support vector machine (SVM) as the replacement for Softmax in the final output layer of a GRU model. Furthermore, the cross-entropy function shall be replaced with a margin-based function. While there have been similar studies (Alalshekmubarak & Smith, 2013; Tang, 2013), this proposal is primarily intended for binary classification on intrusion detection using the 2013 network traffic data from the honeypot systems of Kyoto University. Results show that the GRU-SVM model performs relatively higher than the conventional GRU-Softmax model. The proposed model reached a training accuracy of ~81.54% and a testing accuracy of ~84.15%, while the latter was able to reach a training accuracy of ~63.07% and a testing accuracy of ~70.75%. In addition, the juxtaposition of these two final output layers indicate that the SVM would outperform Softmax in prediction time - a theoretical implication which was supported by the actual training and testing time in the study.

* 5 pages, 4 figures, 5 tables, accepted paper at the International Conference on Machine Learning and Computing (ICMLC) 2018 

  Access Paper or Ask Questions

Saving RNN Computations with a Neuron-Level Fuzzy Memoization Scheme

Feb 14, 2022
Franyell Silfa, Jose-Maria Arnau, Antonio González

Recurrent Neural Networks (RNNs) are a key technology for applications such as automatic speech recognition or machine translation. Unlike conventional feed-forward DNNs, RNNs remember past information to improve the accuracy of future predictions and, therefore, they are very effective for sequence processing problems. For each application run, recurrent layers are executed many times for processing a potentially large sequence of inputs (words, images, audio frames, etc.). In this paper, we observe that the output of a neuron exhibits small changes in consecutive invocations.~We exploit this property to build a neuron-level fuzzy memoization scheme, which dynamically caches each neuron's output and reuses it whenever it is predicted that the current output will be similar to a previously computed result, avoiding in this way the output computations. The main challenge in this scheme is determining whether the new neuron's output for the current input in the sequence will be similar to a recently computed result. To this end, we extend the recurrent layer with a much simpler Bitwise Neural Network (BNN), and show that the BNN and RNN outputs are highly correlated: if two BNN outputs are very similar, the corresponding outputs in the original RNN layer are likely to exhibit negligible changes. The BNN provides a low-cost and effective mechanism for deciding when fuzzy memoization can be applied with a small impact on accuracy. We evaluate our memoization scheme on top of a state-of-the-art accelerator for RNNs, for a variety of different neural networks from multiple application domains. We show that our technique avoids more than 26.7\% of computations, resulting in 21\% energy savings and 1.4x speedup on average.

  Access Paper or Ask Questions

HCM: Hardware-Aware Complexity Metric for Neural Network Architectures

Apr 26, 2020
Alex Karbachevsky, Chaim Baskin, Evgenii Zheltonozhskii, Yevgeny Yermolin, Freddy Gabbay, Alex M. Bronstein, Avi Mendelson

Convolutional Neural Networks (CNNs) have become common in many fields including computer vision, speech recognition, and natural language processing. Although CNN hardware accelerators are already included as part of many SoC architectures, the task of achieving high accuracy on resource-restricted devices is still considered challenging, mainly due to the vast number of design parameters that need to be balanced to achieve an efficient solution. Quantization techniques, when applied to the network parameters, lead to a reduction of power and area and may also change the ratio between communication and computation. As a result, some algorithmic solutions may suffer from lack of memory bandwidth or computational resources and fail to achieve the expected performance due to hardware constraints. Thus, the system designer and the micro-architect need to understand at early development stages the impact of their high-level decisions (e.g., the architecture of the CNN and the amount of bits used to represent its parameters) on the final product (e.g., the expected power saving, area, and accuracy). Unfortunately, existing tools fall short of supporting such decisions. This paper introduces a hardware-aware complexity metric that aims to assist the system designer of the neural network architectures, through the entire project lifetime (especially at its early stages) by predicting the impact of architectural and micro-architectural decisions on the final product. We demonstrate how the proposed metric can help evaluate different design alternatives of neural network models on resource-restricted devices such as real-time embedded systems, and to avoid making design mistakes at early stages.

  Access Paper or Ask Questions

Adversarial Transfer Learning for Punctuation Restoration

Apr 01, 2020
Jiangyan Yi, Jianhua Tao, Ye Bai, Zhengkun Tian, Cunhang Fan

Previous studies demonstrate that word embeddings and part-of-speech (POS) tags are helpful for punctuation restoration tasks. However, two drawbacks still exist. One is that word embeddings are pre-trained by unidirectional language modeling objectives. Thus the word embeddings only contain left-to-right context information. The other is that POS tags are provided by an external POS tagger. So computation cost will be increased and incorrect predicted tags may affect the performance of restoring punctuation marks during decoding. This paper proposes adversarial transfer learning to address these problems. A pre-trained bidirectional encoder representations from transformers (BERT) model is used to initialize a punctuation model. Thus the transferred model parameters carry both left-to-right and right-to-left representations. Furthermore, adversarial multi-task learning is introduced to learn task invariant knowledge for punctuation prediction. We use an extra POS tagging task to help the training of the punctuation predicting task. Adversarial training is utilized to prevent the shared parameters from containing task specific information. We only use the punctuation predicting task to restore marks during decoding stage. Therefore, it will not need extra computation and not introduce incorrect tags from the POS tagger. Experiments are conducted on IWSLT2011 datasets. The results demonstrate that the punctuation predicting models obtain further performance improvement with task invariant knowledge from the POS tagging task. Our best model outperforms the previous state-of-the-art model trained only with lexical features by up to 9.2% absolute overall F_1-score on test set.

  Access Paper or Ask Questions

Synthesizing Credit Card Transactions

Oct 04, 2019
Erik R. Altman

Two elements have been essential to AI's recent boom: (1) deep neural nets and the theory and practice behind them; and (2) cloud computing with its abundant labeled data and large computing resources. Abundant labeled data is available for key domains such as images, speech, natural language processing, and recommendation engines. However, there are many other domains where such data is not available, or access to it is highly restricted for privacy reasons, as with health and financial data. Even when abundant data is available, it is often not labeled. Doing such labeling is labor-intensive and non-scalable. As a result, to the best of our knowledge, key domains still lack labeled data or have at most toy data; or the synthetic data must have access to real data from which it can mimic new data. This paper outlines work to generate realistic synthetic data for an important domain: credit card transactions. Some challenges: there are many patterns and correlations in real purchases. There are millions of merchants and innumerable locations. Those merchants offer a wide variety of goods. Who shops where and when? How much do people pay? What is a realistic fraudulent transaction? We use a mixture of technical approaches and domain knowledge including mechanics of credit card processing, a broad set of consumer domains: electronics, clothing, hair styling, etc. Connecting everything is a virtual world. This paper outlines some of our key techniques and provides evidence that the data generated is indeed realistic. Beyond the scope of this paper: (1) use of our data to develop and train models to predict fraud; (2) coupling models and the synthetic dataset to assess performance in designing accelerators such as GPUs and TPUs.

  Access Paper or Ask Questions

Conversational AI: The Science Behind the Alexa Prize

Jan 11, 2018
Ashwin Ram, Rohit Prasad, Chandra Khatri, Anu Venkatesh, Raefer Gabriel, Qing Liu, Jeff Nunn, Behnam Hedayatnia, Ming Cheng, Ashish Nagar, Eric King, Kate Bland, Amanda Wartick, Yi Pan, Han Song, Sk Jayadevan, Gene Hwang, Art Pettigrue

Conversational agents are exploding in popularity. However, much work remains in the area of social conversation as well as free-form conversation over a broad range of domains and topics. To advance the state of the art in conversational AI, Amazon launched the Alexa Prize, a 2.5-million-dollar university competition where sixteen selected university teams were challenged to build conversational agents, known as socialbots, to converse coherently and engagingly with humans on popular topics such as Sports, Politics, Entertainment, Fashion and Technology for 20 minutes. The Alexa Prize offers the academic community a unique opportunity to perform research with a live system used by millions of users. The competition provided university teams with real user conversational data at scale, along with the user-provided ratings and feedback augmented with annotations by the Alexa team. This enabled teams to effectively iterate and make improvements throughout the competition while being evaluated in real-time through live user interactions. To build their socialbots, university teams combined state-of-the-art techniques with novel strategies in the areas of Natural Language Understanding, Context Modeling, Dialog Management, Response Generation, and Knowledge Acquisition. To support the efforts of participating teams, the Alexa Prize team made significant scientific and engineering investments to build and improve Conversational Speech Recognition, Topic Tracking, Dialog Evaluation, Voice User Experience, and tools for traffic management and scalability. This paper outlines the advances created by the university teams as well as the Alexa Prize team to achieve the common goal of solving the problem of Conversational AI.

* Alexa.Prize.Proceedings accessed (2018)-01-01 
* 18 pages, 5 figures, Alexa Prize Proceedings Paper (, Alexa Prize University Competition to advance Conversational AI 

  Access Paper or Ask Questions

Information Compression, Intelligence, Computing, and Mathematics

Jul 13, 2015
J. Gerard Wolff

This paper presents evidence for the idea that much of artificial intelligence, human perception and cognition, mainstream computing, and mathematics, may be understood as compression of information via the matching and unification of patterns. This is the basis for the "SP theory of intelligence", outlined in the paper and fully described elsewhere. Relevant evidence may be seen: in empirical support for the SP theory; in some advantages of information compression (IC) in terms of biology and engineering; in our use of shorthands and ordinary words in language; in how we merge successive views of any one thing; in visual recognition; in binocular vision; in visual adaptation; in how we learn lexical and grammatical structures in language; and in perceptual constancies. IC via the matching and unification of patterns may be seen in both computing and mathematics: in IC via equations; in the matching and unification of names; in the reduction or removal of redundancy from unary numbers; in the workings of Post's Canonical System and the transition function in the Universal Turing Machine; in the way computers retrieve information from memory; in systems like Prolog; and in the query-by-example technique for information retrieval. The chunking-with-codes technique for IC may be seen in the use of named functions to avoid repetition of computer code. The schema-plus-correction technique may be seen in functions with parameters and in the use of classes in object-oriented programming. And the run-length coding technique may be seen in multiplication, in division, and in several other devices in mathematics and computing. The SP theory resolves the apparent paradox of "decompression by compression". And computing and cognition as IC is compatible with the uses of redundancy in such things as backup copies to safeguard data and understanding speech in a noisy environment.

  Access Paper or Ask Questions

Temporal Attention Augmented Transformer Hawkes Process

Dec 29, 2021
Lu-ning Zhang, Jian-wei Liu, Zhi-yan Song, Xin Zuo

In recent years, mining the knowledge from asynchronous sequences by Hawkes process is a subject worthy of continued attention, and Hawkes processes based on the neural network have gradually become the most hotly researched fields, especially based on the recurrence neural network (RNN). However, these models still contain some inherent shortcomings of RNN, such as vanishing and exploding gradient and long-term dependency problems. Meanwhile, Transformer based on self-attention has achieved great success in sequential modeling like text processing and speech recognition. Although the Transformer Hawkes process (THP) has gained huge performance improvement, THPs do not effectively utilize the temporal information in the asynchronous events, for these asynchronous sequences, the event occurrence instants are as important as the types of events, while conventional THPs simply convert temporal information into position encoding and add them as the input of transformer. With this in mind, we come up with a new kind of Transformer-based Hawkes process model, Temporal Attention Augmented Transformer Hawkes Process (TAA-THP), we modify the traditional dot-product attention structure, and introduce the temporal encoding into attention structure. We conduct numerous experiments on a wide range of synthetic and real-life datasets to validate the performance of our proposed TAA-THP model, significantly improvement compared with existing baseline models on the different measurements is achieved, including log-likelihood on the test dataset, and prediction accuracies of event types and occurrence times. In addition, through the ablation studies, we vividly demonstrate the merit of introducing additional temporal attention by comparing the performance of the model with and without temporal attention.

  Access Paper or Ask Questions