Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"speech": models, code, and papers

Facial Expressions Tracking and Recognition: Database Protocols for Systems Validation and Evaluation

Jun 02, 2015
Catarina Runa Miranda, Pedro Mendes, Pedro Coelho, Xenxo Alvarez, João Freitas, Miguel Sales Dias, Verónica Costa Orvalho

Each human face is unique. It has its own shape, topology, and distinguishing features. As such, developing and testing facial tracking systems are challenging tasks. The existing face recognition and tracking algorithms in Computer Vision mainly specify concrete situations according to particular goals and applications, requiring validation methodologies with data that fits their purposes. However, a database that covers all possible variations of external and factors does not exist, increasing researchers' work in acquiring their own data or compiling groups of databases. To address this shortcoming, we propose a methodology for facial data acquisition through definition of fundamental variables, such as subject characteristics, acquisition hardware, and performance parameters. Following this methodology, we also propose two protocols that allow the capturing of facial behaviors under uncontrolled and real-life situations. As validation, we executed both protocols which lead to creation of two sample databases: FdMiee (Facial database with Multi input, expressions, and environments) and FACIA (Facial Multimodal database driven by emotional induced acting). Using different types of hardware, FdMiee captures facial information under environmental and facial behaviors variations. FACIA is an extension of FdMiee introducing a pipeline to acquire additional facial behaviors and speech using an emotion-acting method. Therefore, this work eases the creation of adaptable database according to algorithm's requirements and applications, leading to simplified validation and testing processes.

* 10 pages, 6 images, Computers & Graphics 

  Access Paper or Ask Questions

DNNAbacus: Toward Accurate Computational Cost Prediction for Deep Neural Networks

May 24, 2022
Lu Bai, Weixing Ji, Qinyuan Li, Xilai Yao, Wei Xin, Wanyi Zhu

Deep learning is attracting interest across a variety of domains, including natural language processing, speech recognition, and computer vision. However, model training is time-consuming and requires huge computational resources. Existing works on the performance prediction of deep neural networks, which mostly focus on the training time prediction of a few models, rely on analytical models and result in high relative errors. %Optimizing task scheduling and reducing job failures in data centers are essential to improve resource utilization and reduce carbon emissions. This paper investigates the computational resource demands of 29 classical deep neural networks and builds accurate models for predicting computational costs. We first analyze the profiling results of typical networks and demonstrate that the computational resource demands of models with different inputs and hyperparameters are not obvious and intuitive. We then propose a lightweight prediction approach DNNAbacus with a novel network structural matrix for network representation. DNNAbacus can accurately predict both memory and time cost for PyTorch and TensorFlow models, which is also generalized to different hardware architectures and can have zero-shot capability for unseen networks. Our experimental results show that the mean relative error (MRE) is 0.9% with respect to time and 2.8% with respect to memory for 29 classic models, which is much lower than the state-of-the-art works.


  Access Paper or Ask Questions

MERLOT: Multimodal Neural Script Knowledge Models

Jun 10, 2021
Rowan Zellers, Ximing Lu, Jack Hessel, Youngjae Yu, Jae Sung Park, Jize Cao, Ali Farhadi, Yejin Choi

As humans, we understand events in the visual world contextually, performing multimodal reasoning across time to make inferences about the past, present, and future. We introduce MERLOT, a model that learns multimodal script knowledge by watching millions of YouTube videos with transcribed speech -- in an entirely label-free, self-supervised manner. By pretraining with a mix of both frame-level (spatial) and video-level (temporal) objectives, our model not only learns to match images to temporally corresponding words, but also to contextualize what is happening globally over time. As a result, MERLOT exhibits strong out-of-the-box representations of temporal commonsense, and achieves state-of-the-art performance on 12 different video QA datasets when finetuned. It also transfers well to the world of static images, allowing models to reason about the dynamic context behind visual scenes. On Visual Commonsense Reasoning, MERLOT answers questions correctly with 80.6% accuracy, outperforming state-of-the-art models of similar size by over 3%, even those that make heavy use of auxiliary supervised data (like object bounding boxes). Ablation analyses demonstrate the complementary importance of: 1) training on videos versus static images; 2) scaling the magnitude and diversity of the pretraining video corpus; and 3) using diverse objectives that encourage full-stack multimodal reasoning, from the recognition to cognition level.

* project page at https://rowanzellers.com/merlot 

  Access Paper or Ask Questions

Zero-Resource Multi-Dialectal Arabic Natural Language Understanding

Apr 14, 2021
Muhammad Khalifa, Hesham Hassan, Aly Fahmy

A reasonable amount of annotated data is required for fine-tuning pre-trained language models (PLM) on downstream tasks. However, obtaining labeled examples for different language varieties can be costly. In this paper, we investigate the zero-shot performance on Dialectal Arabic (DA) when fine-tuning a PLM on modern standard Arabic (MSA) data only -- identifying a significant performance drop when evaluating such models on DA. To remedy such performance drop, we propose self-training with unlabeled DA data and apply it in the context of named entity recognition (NER), part-of-speech (POS) tagging, and sarcasm detection (SRD) on several DA varieties. Our results demonstrate the effectiveness of self-training with unlabeled DA data: improving zero-shot MSA-to-DA transfer by as large as \texttildelow 10\% F$_1$ (NER), 2\% accuracy (POS tagging), and 4.5\% F$_1$ (SRD). We conduct an ablation experiment and show that the performance boost observed directly results from the unlabeled DA examples used for self-training. Our work opens up opportunities for leveraging the relatively abundant labeled MSA datasets to develop DA models for zero and low-resource dialects. We also report new state-of-the-art performance on all three tasks and open-source our fine-tuned models for the research community.


  Access Paper or Ask Questions

A Distributed Optimisation Framework Combining Natural Gradient with Hessian-Free for Discriminative Sequence Training

Mar 12, 2021
Adnan Haider, Chao Zhang, Florian L. Kreyssig, Philip C. Woodland

This paper presents a novel natural gradient and Hessian-free (NGHF) optimisation framework for neural network training that can operate efficiently in a distributed manner. It relies on the linear conjugate gradient (CG) algorithm to combine the natural gradient (NG) method with local curvature information from Hessian-free (HF) or other second-order methods. A solution to a numerical issue in CG allows effective parameter updates to be generated with far fewer CG iterations than usually used (e.g. 5-8 instead of 200). This work also presents a novel preconditioning approach to improve the progress made by individual CG iterations for models with shared parameters. Although applicable to other training losses and model structures, NGHF is investigated in this paper for lattice-based discriminative sequence training for hybrid hidden Markov model acoustic models using a standard recurrent neural network, long short-term memory, and time delay neural network models for output probability calculation. Automatic speech recognition experiments are reported on the multi-genre broadcast data set for a range of different acoustic model types. These experiments show that NGHF achieves larger word error rate reductions than standard stochastic gradient descent or Adam, while requiring orders of magnitude fewer parameter updates.


  Access Paper or Ask Questions

Dynamical Variational Autoencoders: A Comprehensive Review

Aug 28, 2020
Laurent Girin, Simon Leglaive, Xiaoyu Bie, Julien Diard, Thomas Hueber, Xavier Alameda-Pineda

The Variational Autoencoder (VAE) is a powerful deep generative model that is now extensively used to represent high-dimensional complex data via a low-dimensional latent space that is learned in an unsupervised manner. In the original VAE model, input data vectors are processed independently. In the recent years, a series of papers have presented different extensions of the VAE to sequential data, that not only model the latent space, but also model the temporal dependencies within a sequence of data vectors and/or corresponding latent vectors, relying on recurrent neural networks or state space models. In this paper we perform an extensive literature review of these models. Importantly, we introduce and discuss a general class of models called Dynamical Variational Autoencoders (DVAEs) that encompass a large subset of these temporal VAE extensions. Then we present in details seven different instances of DVAE that were recently proposed in the literature, with an effort to homogenize the notations and presentation lines, as well as to relate those models with existing classical temporal models (that are also presented for the sake of completeness). We reimplemented those seven DVAE models and we present the results of an experimental benchmark that we conducted on the speech analysis-resynthesis task (the PyTorch code will be made publicly available). An extensive discussion is presented at the end of the paper, aiming to comment on important issues concerning the DVAE class of models and to describe future research guidelines.


  Access Paper or Ask Questions

Offline Meta-Reinforcement Learning with Advantage Weighting

Aug 13, 2020
Eric Mitchell, Rafael Rafailov, Xue Bin Peng, Sergey Levine, Chelsea Finn

Massive datasets have proven critical to successfully applying deep learning to real-world problems, catalyzing progress on tasks such as object recognition, speech transcription, and machine translation. In this work, we study an analogous problem within reinforcement learning: can we enable an agent to leverage large, diverse experiences from previous tasks in order to quickly learn a new task? While recent work has shown some promise towards offline reinforcement learning, considerably less work has studied how we might leverage offline behavioral data when transferring to new tasks. To address this gap, we consider the problem setting of offline meta-reinforcement learning. By nature of being offline, algorithms for offline meta-RL can utilize the largest possible pool of training data available, and eliminate potentially unsafe or costly data collection during meta-training. Targeting this setting, we propose Meta-Actor Critic with Advantage Weighting (MACAW), an optimization-based meta-learning algorithm that uses simple, supervised regression objectives for both inner-loop adaptation and outer-loop meta-learning. To our knowledge, MACAW is the first successful combination of gradient-based meta-learning and value-based reinforcement learning. We empirically find that this approach enables fully offline meta-reinforcement learning and achieves notable gains over prior methods in some settings.

* 8 pages main text; 18 pages total 

  Access Paper or Ask Questions

Progressive Tandem Learning for Pattern Recognition with Deep Spiking Neural Networks

Jul 02, 2020
Jibin Wu, Chenglin Xu, Daquan Zhou, Haizhou Li, Kay Chen Tan

Spiking neural networks (SNNs) have shown clear advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency, due to their event-driven nature and sparse communication. However, the training of deep SNNs is not straightforward. In this paper, we propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition, which is referred to as progressive tandem learning of deep SNNs. By studying the equivalence between ANNs and SNNs in the discrete representation space, a primitive network conversion method is introduced that takes full advantage of spike count to approximate the activation value of analog neurons. To compensate for the approximation errors arising from the primitive network conversion, we further introduce a layer-wise learning method with an adaptive training scheduler to fine-tune the network weights. The progressive tandem learning framework also allows hardware constraints, such as limited weight precision and fan-in connections, to be progressively imposed during training. The SNNs thus trained have demonstrated remarkable classification and regression capabilities on large-scale object recognition, image reconstruction, and speech separation tasks, while requiring at least an order of magnitude reduced inference time and synaptic operations than other state-of-the-art SNN implementations. It, therefore, opens up a myriad of opportunities for pervasive mobile and embedded devices with a limited power budget.


  Access Paper or Ask Questions

A Review of Statistical Learning Machines from ATR to DNA Microarrays: design, assessment, and advice for practitioners

Jun 25, 2019
Waleed A. Yousef

Statistical Learning is the process of estimating an unknown probabilistic input-output relationship of a system using a limited number of observations; and a statistical learning machine (SLM) is the machine that learned such a process. While their roots grow deeply in Probability Theory, SLMs are ubiquitous in the modern world. Automatic Target Recognition (ATR) in military applications, Computer Aided Diagnosis (CAD) in medical imaging, DNA microarrays in Genomics, Optical Character Recognition (OCR), Speech Recognition (SR), spam email filtering, stock market prediction, etc., are few examples and applications for SLM; diverse fields but one theory. The field of Statistical Learning can be decomposed to two basic subfields, Design and Assessment. Three main groups of specializations-namely statisticians, engineers, and computer scientists (ordered ascendingly by programming capabilities and descendingly by mathematical rigor)-exist on the venue of this field and each takes its elephant bite. Exaggerated rigorous analysis of statisticians sometimes deprives them from considering new ML techniques and methods that, yet, have no "complete" mathematical theory. On the other hand, immoderate add-hoc simulations of computer scientists sometimes derive them towards unjustified and immature results. A prudent approach is needed that has the enough flexibility to utilize simulations and trials and errors without sacrificing any rigor. If this prudent attitude is necessary for this field it is necessary, as well, in other fields of Engineering.

* This manuscript was composed in 2006 as part of a the author's Ph.D. dissertation 

  Access Paper or Ask Questions

<<
806
807
808
809
810
811
812
813
814
815
816
817
818
>>