Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"speech": models, code, and papers

Mutually-Constrained Monotonic Multihead Attention for Online ASR

Mar 26, 2021
Jaeyun Song, Hajin Shim, Eunho Yang

Despite the feature of real-time decoding, Monotonic Multihead Attention (MMA) shows comparable performance to the state-of-the-art offline methods in machine translation and automatic speech recognition (ASR) tasks. However, the latency of MMA is still a major issue in ASR and should be combined with a technique that can reduce the test latency at inference time, such as head-synchronous beam search decoding, which forces all non-activated heads to activate after a small fixed delay from the first head activation. In this paper, we remove the discrepancy between training and test phases by considering, in the training of MMA, the interactions across multiple heads that will occur in the test time. Specifically, we derive the expected alignments from monotonic attention by considering the boundaries of other heads and reflect them in the learning process. We validate our proposed method on the two standard benchmark datasets for ASR and show that our approach, MMA with the mutually-constrained heads from the training stage, provides better performance than baselines.

* Accepted at IEEE ICASSP 2021 

  Access Paper or Ask Questions

Modeling the Severity of Complaints in Social Media

Mar 23, 2021
Mali Jin, Nikolaos Aletras

The speech act of complaining is used by humans to communicate a negative mismatch between reality and expectations as a reaction to an unfavorable situation. Linguistic theory of pragmatics categorizes complaints into various severity levels based on the face-threat that the complainer is willing to undertake. This is particularly useful for understanding the intent of complainers and how humans develop suitable apology strategies. In this paper, we study the severity level of complaints for the first time in computational linguistics. To facilitate this, we enrich a publicly available data set of complaints with four severity categories and train different transformer-based networks combined with linguistic information achieving 55.7 macro F1. We also jointly model binary complaint classification and complaint severity in a multi-task setting achieving new state-of-the-art results on binary complaint detection reaching up to 88.2 macro F1. Finally, we present a qualitative analysis of the behavior of our models in predicting complaint severity levels.

* Accepted at NAACL 2021 

  Access Paper or Ask Questions

Resource-efficient DNNs for Keyword Spotting using Neural Architecture Search and Quantization

Dec 18, 2020
David Peter, Wolfgang Roth, Franz Pernkopf

This paper introduces neural architecture search (NAS) for the automatic discovery of small models for keyword spotting (KWS) in limited resource environments. We employ a differentiable NAS approach to optimize the structure of convolutional neural networks (CNNs) to maximize the classification accuracy while minimizing the number of operations per inference. Using NAS only, we were able to obtain a highly efficient model with 95.4% accuracy on the Google speech commands dataset with 494.8 kB of memory usage and 19.6 million operations. Additionally, weight quantization is used to reduce the memory consumption even further. We show that weight quantization to low bit-widths (e.g. 1 bit) can be used without substantial loss in accuracy. By increasing the number of input features from 10 MFCC to 20 MFCC we were able to increase the accuracy to 96.3% at 340.1 kB of memory usage and 27.1 million operations.


  Access Paper or Ask Questions

Multilingual Offensive Language Identification with Cross-lingual Embeddings

Oct 11, 2020
Tharindu Ranasinghe, Marcos Zampieri

Offensive content is pervasive in social media and a reason for concern to companies and government organizations. Several studies have been recently published investigating methods to detect the various forms of such content (e.g. hate speech, cyberbulling, and cyberaggression). The clear majority of these studies deal with English partially because most annotated datasets available contain English data. In this paper, we take advantage of English data available by applying cross-lingual contextual word embeddings and transfer learning to make predictions in languages with less resources. We project predictions on comparable data in Bengali, Hindi, and Spanish and we report results of 0.8415 F1 macro for Bengali, 0.8568 F1 macro for Hindi, and 0.7513 F1 macro for Spanish. Finally, we show that our approach compares favorably to the best systems submitted to recent shared tasks on these three languages, confirming the robustness of cross-lingual contextual embeddings and transfer learning for this task.

* Accepted to EMNLP 2020 

  Access Paper or Ask Questions

Explaining Deep Neural Networks

Oct 04, 2020
Oana-Maria Camburu

Deep neural networks are becoming more and more popular due to their revolutionary success in diverse areas, such as computer vision, natural language processing, and speech recognition. However, the decision-making processes of these models are generally not interpretable to users. In various domains, such as healthcare, finance, or law, it is critical to know the reasons behind a decision made by an artificial intelligence system. Therefore, several directions for explaining neural models have recently been explored. In this thesis, I investigate two major directions for explaining deep neural networks. The first direction consists of feature-based post-hoc explanatory methods, that is, methods that aim to explain an already trained and fixed model (post-hoc), and that provide explanations in terms of input features, such as tokens for text and superpixels for images (feature-based). The second direction consists of self-explanatory neural models that generate natural language explanations, that is, models that have a built-in module that generates explanations for the predictions of the model.

* PhD Thesis, University of Oxford 

  Access Paper or Ask Questions

On Mean Absolute Error for Deep Neural Network Based Vector-to-Vector Regression

Aug 12, 2020
Jun Qi, Jun Du, Sabato Marco Siniscalchi, Xiaoli Ma, Chin-Hui Lee

In this paper, we exploit the properties of mean absolute error (MAE) as a loss function for the deep neural network (DNN) based vector-to-vector regression. The goal of this work is two-fold: (i) presenting performance bounds of MAE, and (ii) demonstrating new properties of MAE that make it more appropriate than mean squared error (MSE) as a loss function for DNN based vector-to-vector regression. First, we show that a generalized upper-bound for DNN-based vector- to-vector regression can be ensured by leveraging the known Lipschitz continuity property of MAE. Next, we derive a new generalized upper bound in the presence of additive noise. Finally, in contrast to conventional MSE commonly adopted to approximate Gaussian errors for regression, we show that MAE can be interpreted as an error modeled by Laplacian distribution. Speech enhancement experiments are conducted to corroborate our proposed theorems and validate the performance advantages of MAE over MSE for DNN based regression.

* IEEE Signal Processing Letters, 2020 

  Access Paper or Ask Questions

Developing a Recommendation Benchmark for MLPerf Training and Inference

Apr 14, 2020
Carole-Jean Wu, Robin Burke, Ed H. Chi, Joseph Konstan, Julian McAuley, Yves Raimond, Hao Zhang

Deep learning-based recommendation models are used pervasively and broadly, for example, to recommend movies, products, or other information most relevant to users, in order to enhance the user experience. Among various application domains which have received significant industry and academia research attention, such as image classification, object detection, language and speech translation, the performance of deep learning-based recommendation models is less well explored, even though recommendation tasks unarguably represent significant AI inference cycles at large-scale datacenter fleets. To advance the state of understanding and enable machine learning system development and optimization for the commerce domain, we aim to define an industry-relevant recommendation benchmark for the MLPerf Training andInference Suites. The paper synthesizes the desirable modeling strategies for personalized recommendation systems. We lay out desirable characteristics of recommendation model architectures and data sets. We then summarize the discussions and advice from the MLPerf Recommendation Advisory Board.


  Access Paper or Ask Questions

Improving Embedding Extraction for Speaker Verification with Ladder Network

Mar 20, 2020
Fei Tao, Gokhan Tur

Speaker verification is an established yet challenging task in speech processing and a very vibrant research area. Recent speaker verification (SV) systems rely on deep neural networks to extract high-level embeddings which are able to characterize the users' voices. Most of the studies have investigated on improving the discriminability of the networks to extract better embeddings for performances improvement. However, only few research focus on improving the generalization. In this paper, we propose to apply the ladder network framework in the SV systems, which combines the supervised and unsupervised learning fashions. The ladder network can make the system to have better high-level embedding by balancing the trade-off to keep/discard as much useful/useless information as possible. We evaluated the framework on two state-of-the-art SV systems, d-vector and x-vector, which can be used for different use cases. The experiments showed that the proposed approach relatively improved the performance by 10% at most without adding parameters and augmented data.


  Access Paper or Ask Questions

Audio-Visual Decision Fusion for WFST-based and seq2seq Models

Jan 29, 2020
Rohith Aralikatti, Sharad Roy, Abhinav Thanda, Dilip Kumar Margam, Pujitha Appan Kandala, Tanay Sharma, Shankar M Venkatesan

Under noisy conditions, speech recognition systems suffer from high Word Error Rates (WER). In such cases, information from the visual modality comprising the speaker lip movements can help improve the performance. In this work, we propose novel methods to fuse information from audio and visual modalities at inference time. This enables us to train the acoustic and visual models independently. First, we train separate RNN-HMM based acoustic and visual models. A common WFST generated by taking a special union of the HMM components is used for decoding using a modified Viterbi algorithm. Second, we train separate seq2seq acoustic and visual models. The decoding step is performed simultaneously for both modalities using shallow fusion while maintaining a common hypothesis beam. We also present results for a novel seq2seq fusion without the weighing parameter. We present results at varying SNR and show that our methods give significant improvements over acoustic-only WER.

* Submitted for review to ICASSP 2020 on October 21st, 2019 

  Access Paper or Ask Questions

<<
682
683
684
685
686
687
688
689
690
691
692
693
694
>>