Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"speech": models, code, and papers

Improved Accent Classification Combining Phonetic Vowels with Acoustic Features

Feb 24, 2016
Zhenhao Ge

Researches have shown accent classification can be improved by integrating semantic information into pure acoustic approach. In this work, we combine phonetic knowledge, such as vowels, with enhanced acoustic features to build an improved accent classification system. The classifier is based on Gaussian Mixture Model-Universal Background Model (GMM-UBM), with normalized Perceptual Linear Predictive (PLP) features. The features are further optimized by Principle Component Analysis (PCA) and Hetroscedastic Linear Discriminant Analysis (HLDA). Using 7 major types of accented speech from the Foreign Accented English (FAE) corpus, the system achieves classification accuracy 54% with input test data as short as 20 seconds, which is competitive to the state of the art in this field.

* International Congress on Image and Signal Processing (CISP) 2015 

  Access Paper or Ask Questions

Kaldi+PDNN: Building DNN-based ASR Systems with Kaldi and PDNN

Jan 27, 2014
Yajie Miao

The Kaldi toolkit is becoming popular for constructing automated speech recognition (ASR) systems. Meanwhile, in recent years, deep neural networks (DNNs) have shown state-of-the-art performance on various ASR tasks. This document describes our open-source recipes to implement fully-fledged DNN acoustic modeling using Kaldi and PDNN. PDNN is a lightweight deep learning toolkit developed under the Theano environment. Using these recipes, we can build up multiple systems including DNN hybrid systems, convolutional neural network (CNN) systems and bottleneck feature systems. These recipes are directly based on the Kaldi Switchboard 110-hour setup. However, adapting them to new datasets is easy to achieve.

* unpublished manuscript 

  Access Paper or Ask Questions

The ACM Multimedia 2022 Computational Paralinguistics Challenge: Vocalisations, Stuttering, Activity, & Mosquitoes

May 13, 2022
Björn W. Schuller, Anton Batliner, Shahin Amiriparian, Christian Bergler, Maurice Gerczuk, Natalie Holz, Pauline Larrouy-Maestri, Sebastian P. Bayerl, Korbinian Riedhammer, Adria Mallol-Ragolta, Maria Pateraki, Harry Coppock, Ivan Kiskin, Marianne Sinka, Stephen Roberts

The ACM Multimedia 2022 Computational Paralinguistics Challenge addresses four different problems for the first time in a research competition under well-defined conditions: In the Vocalisations and Stuttering Sub-Challenges, a classification on human non-verbal vocalisations and speech has to be made; the Activity Sub-Challenge aims at beyond-audio human activity recognition from smartwatch sensor data; and in the Mosquitoes Sub-Challenge, mosquitoes need to be detected. We describe the Sub-Challenges, baseline feature extraction, and classifiers based on the usual ComPaRE and BoAW features, the auDeep toolkit, and deep feature extraction from pre-trained CNNs using the DeepSpectRum toolkit; in addition, we add end-to-end sequential modelling, and a log-mel-128-BNN.

* 5 pages, part of the ACM Multimedia 2022 Grand Challenge "The ACM Multimedia 2022 Computational Paralinguistics Challenge (ComParE 2022)" 

  Access Paper or Ask Questions

Explainable deepfake and spoofing detection: an attack analysis using SHapley Additive exPlanations

Feb 28, 2022
Wanying Ge, Massimiliano Todisco, Nicholas Evans

Despite several years of research in deepfake and spoofing detection for automatic speaker verification, little is known about the artefacts that classifiers use to distinguish between bona fide and spoofed utterances. An understanding of these is crucial to the design of trustworthy, explainable solutions. In this paper we report an extension of our previous work to better understand classifier behaviour to the use of SHapley Additive exPlanations (SHAP) to attack analysis. Our goal is to identify the artefacts that characterise utterances generated by different attacks algorithms. Using a pair of classifiers which operate either upon raw waveforms or magnitude spectrograms, we show that visualisations of SHAP results can be used to identify attack-specific artefacts and the differences and consistencies between synthetic speech and converted voice spoofing attacks.

* Submitted to Speaker Odyssey Workshop 2022 

  Access Paper or Ask Questions

Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances

Nov 13, 2021
Daniel Steinberg, Paul Munro

Deep learning models have been used for a wide variety of tasks. They are prevalent in computer vision, natural language processing, speech recognition, and other areas. While these models have worked well under many scenarios, it has been shown that they are vulnerable to adversarial attacks. This has led to a proliferation of research into ways that such attacks could be identified and/or defended against. Our goal is to explore the contribution that can be attributed to using multiple underlying models for the purpose of adversarial instance detection. Our paper describes two approaches that incorporate representations from multiple models for detecting adversarial examples. We devise controlled experiments for measuring the detection impact of incrementally utilizing additional models. For many of the scenarios we consider, the results show that performance increases with the number of underlying models used for extracting representations.

  Access Paper or Ask Questions

Speaker Adaptation with Continuous Vocoder-based DNN-TTS

Aug 02, 2021
Ali Raheem Mandeel, Mohammed Salah Al-Radhi, Tamás Gábor Csapó

Traditional vocoder-based statistical parametric speech synthesis can be advantageous in applications that require low computational complexity. Recent neural vocoders, which can produce high naturalness, still cannot fulfill the requirement of being real-time during synthesis. In this paper, we experiment with our earlier continuous vocoder, in which the excitation is modeled with two one-dimensional parameters: continuous F0 and Maximum Voiced Frequency. We show on the data of 9 speakers that an average voice can be trained for DNN-TTS, and speaker adaptation is feasible 400 utterances (about 14 minutes). Objective experiments support that the quality of speaker adaptation with Continuous Vocoder-based DNN-TTS is similar to the quality of the speaker adaptation with a WORLD Vocoder-based baseline.


  Access Paper or Ask Questions

Token-Level Supervised Contrastive Learning for Punctuation Restoration

Jul 19, 2021
Qiushi Huang, Tom Ko, H Lilian Tang, Xubo Liu, Bo Wu

Punctuation is critical in understanding natural language text. Currently, most automatic speech recognition (ASR) systems do not generate punctuation, which affects the performance of downstream tasks, such as intent detection and slot filling. This gives rise to the need for punctuation restoration. Recent work in punctuation restoration heavily utilizes pre-trained language models without considering data imbalance when predicting punctuation classes. In this work, we address this problem by proposing a token-level supervised contrastive learning method that aims at maximizing the distance of representation of different punctuation marks in the embedding space. The result shows that training with token-level supervised contrastive learning obtains up to 3.2% absolute F1 improvement on the test set.

* 5 pages, 3 figures 

  Access Paper or Ask Questions

Between Flexibility and Consistency: Joint Generation of Captions and Subtitles

Jul 13, 2021
Alina Karakanta, Marco Gaido, Matteo Negri, Marco Turchi

Speech translation (ST) has lately received growing interest for the generation of subtitles without the need for an intermediate source language transcription and timing (i.e. captions). However, the joint generation of source captions and target subtitles does not only bring potential output quality advantages when the two decoding processes inform each other, but it is also often required in multilingual scenarios. In this work, we focus on ST models which generate consistent captions-subtitles in terms of structure and lexical content. We further introduce new metrics for evaluating subtitling consistency. Our findings show that joint decoding leads to increased performance and consistency between the generated captions and subtitles while still allowing for sufficient flexibility to produce subtitles conforming to language-specific needs and norms.

* Accepted at IWSLT 2021 

  Access Paper or Ask Questions

Using IPA-Based Tacotron for Data Efficient Cross-Lingual Speaker Adaptation and Pronunciation Enhancement

Nov 12, 2020
Hamed Hemati, Damian Borth

Recent neural Text-to-Speech (TTS) models have been shown to perform very well when enough data is available. However, fine-tuning them towards a new speaker or a new language is not as straight-forward in a low-resource setup. In this paper, we show that by applying minor changes to a Tacotron model, one can transfer an existing TTS model for a new speaker with the same or a different language using only 20 minutes of data. For this purpose, we first introduce a baseline multi-lingual Tacotron with language-agnostic input, then show how transfer learning is done for different scenarios of speaker adaptation without exploiting any pre-trained speaker encoder or code-switching technique. We evaluate the transferred model in both subjective and objective ways.

* 5 pages 

  Access Paper or Ask Questions

Generating Adequate Distractors for Multiple-Choice Questions

Oct 23, 2020
Cheng Zhang, Yicheng Sun, Hejia Chen, Jie Wang

This paper presents a novel approach to automatic generation of adequate distractors for a given question-answer pair (QAP) generated from a given article to form an adequate multiple-choice question (MCQ). Our method is a combination of part-of-speech tagging, named-entity tagging, semantic-role labeling, regular expressions, domain knowledge bases, word embeddings, word edit distance, WordNet, and other algorithms. We use the US SAT (Scholastic Assessment Test) practice reading tests as a dataset to produce QAPs and generate three distractors for each QAP to form an MCQ. We show that, via experiments and evaluations by human judges, each MCQ has at least one adequate distractor and 84\% of MCQs have three adequate distractors.

  Access Paper or Ask Questions