Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"speech": models, code, and papers

Dependency Parsing based Semantic Representation Learning with Graph Neural Network for Enhancing Expressiveness of Text-to-Speech

Apr 20, 2021
Yixuan Zhou, Changhe Song, Jingbei Li, Zhiyong Wu, Helen Meng

Semantic information of a sentence is crucial for improving the expressiveness of a text-to-speech (TTS) system, but can not be well learned from the limited training TTS dataset just by virtue of the nowadays encoder structures. As large scale pre-trained text representation develops, bidirectional encoder representations from transformers (BERT) has been proven to embody text-context semantic information and applied to TTS as additional input. However BERT can not explicitly associate semantic tokens from point of dependency relations in a sentence. In this paper, to enhance expressiveness, we propose a semantic representation learning method based on graph neural network, considering dependency relations of a sentence. Dependency graph of input text is composed of edges from dependency tree structure considering both the forward and the reverse directions. Semantic representations are then extracted at word level by the relational gated graph network (RGGN) fed with features from BERT as nodes input. Upsampled semantic representations and character-level embeddings are concatenated to serve as the encoder input of Tacotron-2. Experimental results show that our proposed method outperforms the baseline using vanilla BERT features both in LJSpeech and Blizzard Challenge 2013 datasets, and semantic representations learned from the reverse direction are more effective for enhancing expressiveness.

* 5 pages, submitted to INTERSPEECH 2021 

  Access Paper or Ask Questions

Principal components variable importance reconstruction (PC-VIR): Exploring predictive importance in multicollinear acoustic speech data

Feb 09, 2021
Christopher Carignan, Ander Egurtzegi

This paper presents a method of exploring the relative predictive importance of individual variables in multicollinear data sets at three levels of significance: strong importance, moderate importance, and no importance. Implementation of Bonferroni adjustment to control for Type I error in the method is described, and results with and without the correction are compared. An example of the method in binary logistic modeling is demonstrated by using a set of 20 acoustic features to discriminate vocalic nasality in the speech of six speakers of the Mixean variety of Low Navarrese Basque. Validation of the method is presented by comparing the direction of significant effects to those observed in separate logistic mixed effects models, as well as goodness of fit and prediction accuracy compared to partial least squares logistic regression. The results show that the proposed method yields: (1) similar, but more conservative estimates in comparison to separate logistic regression models, (2) models that fit data as well as partial least squares methods, and (3) predictions for new data that are as accurate as partial least squares methods.

* 10 pages, 3 figures, GitHub repository 

  Access Paper or Ask Questions

Hybrid Data Augmentation and Deep Attention-based Dilated Convolutional-Recurrent Neural Networks for Speech Emotion Recognition

Sep 18, 2021
Nhat Truong Pham, Duc Ngoc Minh Dang, Sy Dzung Nguyen

Speech emotion recognition (SER) has been one of the significant tasks in Human-Computer Interaction (HCI) applications. However, it is hard to choose the optimal features and deal with imbalance labeled data. In this article, we investigate hybrid data augmentation (HDA) methods to generate and balance data based on traditional and generative adversarial networks (GAN) methods. To evaluate the effectiveness of HDA methods, a deep learning framework namely (ADCRNN) is designed by integrating deep dilated convolutional-recurrent neural networks with an attention mechanism. Besides, we choose 3D log Mel-spectrogram (MelSpec) features as the inputs for the deep learning framework. Furthermore, we reconfigure a loss function by combining a softmax loss and a center loss to classify the emotions. For validating our proposed methods, we use the EmoDB dataset that consists of several emotions with imbalanced samples. Experimental results prove that the proposed methods achieve better accuracy than the state-of-the-art methods on the EmoDB with 87.12% and 88.47% for the traditional and GAN-based methods, respectively.

* 12 pages, 16 figures, 6 tables 

  Access Paper or Ask Questions

Improving Word Recognition in Speech Transcriptions by Decision-level Fusion of Stemming and Two-way Phoneme Pruning

Jul 26, 2021
Sunakshi Mehra, Seba Susan

We introduce an unsupervised approach for correcting highly imperfect speech transcriptions based on a decision-level fusion of stemming and two-way phoneme pruning. Transcripts are acquired from videos by extracting audio using Ffmpeg framework and further converting audio to text transcript using Google API. In the benchmark LRW dataset, there are 500 word categories, and 50 videos per class in mp4 format. All videos consist of 29 frames (each 1.16 s long) and the word appears in the middle of the video. In our approach we tried to improve the baseline accuracy from 9.34% by using stemming, phoneme extraction, filtering and pruning. After applying the stemming algorithm to the text transcript and evaluating the results, we achieved 23.34% accuracy in word recognition. To convert words to phonemes we used the Carnegie Mellon University (CMU) pronouncing dictionary that provides a phonetic mapping of English words to their pronunciations. A two-way phoneme pruning is proposed that comprises of the two non-sequential steps: 1) filtering and pruning the phonemes containing vowels and plosives 2) filtering and pruning the phonemes containing vowels and fricatives. After obtaining results of stemming and two-way phoneme pruning, we applied decision-level fusion and that led to an improvement of word recognition rate upto 32.96%.

* Accepted in International Advanced Computing Conference (2020) 

  Access Paper or Ask Questions

An End-to-End Mispronunciation Detection System for L2 English Speech Leveraging Novel Anti-Phone Modeling

May 25, 2020
Bi-Cheng Yan, Meng-Che Wu, Hsiao-Tsung Hung, Berlin Chen

Mispronunciation detection and diagnosis (MDD) is a core component of computer-assisted pronunciation training (CAPT). Most of the existing MDD approaches focus on dealing with categorical errors (viz. one canonical phone is substituted by another one, aside from those mispronunciations caused by deletions or insertions). However, accurate detection and diagnosis of non-categorial or distortion errors (viz. approximating L2 phones with L1 (first-language) phones, or erroneous pronunciations in between) still seems out of reach. In view of this, we propose to conduct MDD with a novel end- to-end automatic speech recognition (E2E-based ASR) approach. In particular, we expand the original L2 phone set with their corresponding anti-phone set, making the E2E-based MDD approach have a better capability to take in both categorical and non-categorial mispronunciations, aiming to provide better mispronunciation detection and diagnosis feedback. Furthermore, a novel transfer-learning paradigm is devised to obtain the initial model estimate of the E2E-based MDD system without resource to any phonological rules. Extensive sets of experimental results on the L2-ARCTIC dataset show that our best system can outperform the existing E2E baseline system and pronunciation scoring based method (GOP) in terms of the F1-score, by 11.05% and 27.71%, respectively.

* 5 pages, 2 figures, Submitted to INTERSPEECH 2020 

  Access Paper or Ask Questions

An error correction scheme for improved air-tissue boundary in real-time MRI video for speech production

Mar 09, 2022
Anwesha Roy, Varun Belagali, Prasanta Kumar Ghosh

The best performance in Air-tissue boundary (ATB) segmentation of real-time Magnetic Resonance Imaging (rtMRI) videos in speech production is known to be achieved by a 3-dimensional convolutional neural network (3D-CNN) model. However, the evaluation of this model, as well as other ATB segmentation techniques reported in the literature, is done using Dynamic Time Warping (DTW) distance between the entire original and predicted contours. Such an evaluation measure may not capture local errors in the predicted contour. Careful analysis of predicted contours reveals errors in regions like the velum part of contour1 (ATB comprising of upper lip, hard palate, and velum) and tongue base section of contour2 (ATB covering jawline, lower lip, tongue base, and epiglottis), which are not captured in a global evaluation metric like DTW distance. In this work, we automatically detect such errors and propose a correction scheme for the same. We also propose two new evaluation metrics for ATB segmentation separately in contour1 and contour2 to explicitly capture two types of errors in these contours. The proposed detection and correction strategies result in an improvement of these two evaluation metrics by 61.8% and 61.4% for contour1 and by 67.8% and 28.4% for contour2. Traditional DTW distance, on the other hand, improves by 44.6% for contour1 and 4.0% for contour2.

* accepted for ICASSP 2022 

  Access Paper or Ask Questions

Conv-Transformer Transducer: Low Latency, Low Frame Rate, Streamable End-to-End Speech Recognition

Aug 13, 2020
Wenyong Huang, Wenchao Hu, Yu Ting Yeung, Xiao Chen

Transformer has achieved competitive performance against state-of-the-art end-to-end models in automatic speech recognition (ASR), and requires significantly less training time than RNN-based models. The original Transformer, with encoder-decoder architecture, is only suitable for offline ASR. It relies on an attention mechanism to learn alignments, and encodes input audio bidirectionally. The high computation cost of Transformer decoding also limits its use in production streaming systems. To make Transformer suitable for streaming ASR, we explore Transducer framework as a streamable way to learn alignments. For audio encoding, we apply unidirectional Transformer with interleaved convolution layers. The interleaved convolution layers are used for modeling future context which is important to performance. To reduce computation cost, we gradually downsample acoustic input, also with the interleaved convolution layers. Moreover, we limit the length of history context in self-attention to maintain constant computation cost for each decoding step. We show that this architecture, named Conv-Transformer Transducer, achieves competitive performance on LibriSpeech dataset (3.6\% WER on test-clean) without external language models. The performance is comparable to previously published streamable Transformer Transducer and strong hybrid streaming ASR systems, and is achieved with smaller look-ahead window (140~ms), fewer parameters and lower frame rate.

* Accepted by INTERSPEECH 2020 

  Access Paper or Ask Questions

Dual-path RNN: efficient long sequence modeling for time-domain single-channel speech separation

Oct 14, 2019
Yi Luo, Zhuo Chen, Takuya Yoshioka

Recent studies in deep learning-based speech separation have proven the superiority of time-domain approaches to conventional time-frequency-based methods. Unlike the time-frequency domain approaches, the time-domain separation systems often receive input sequences consisting of a huge number of time steps, which introduces challenges for modeling extremely long sequences. Conventional recurrent neural networks (RNNs) are not effective for modeling such long sequences due to optimization difficulties, while one-dimensional convolutional neural networks (1-D CNNs) cannot perform utterance-level sequence modeling when its receptive field is smaller than the sequence length. In this paper, we propose dual-path recurrent neural network (DPRNN), a simple yet effective method for organizing RNN layers in a deep structure to model extremely long sequences. DPRNN splits the long sequential input into smaller chunks and applies intra- and inter-chunk operations iteratively, where the input length can be made proportional to the square root of the original sequence length in each operation. Experiments show that by replacing 1-D CNN with DPRNN and apply sample-level modeling in the time-domain audio separation network (TasNet), a new state-of-the-art performance on WSJ0-2mix is achieved with a 20 times smaller model than the previous best system.

  Access Paper or Ask Questions

DPT-FSNet:Dual-path Transformer Based Full-band and Sub-band Fusion Network for Speech Enhancement

Apr 27, 2021
Feng Dang, Hangting Chen, Pengyuan Zhang

Recently, dual-path networks have achieved promising performance due to their ability to model local and global features of the input sequence. However, previous studies are based on simple time-domain features and do not fully investigate the impact of the input features of the dual-path network on the enhancement performance. In this paper, we propose a dual-path transformer-based full-band and sub-band fusion network (DPT-FSNet) for speech enhancement in the frequency domain. The intra and inter parts of the dual-path transformer network in our model can be seen as sub-band and full-band modeling respectively, which have stronger interpretability as well as more information compared to the features utilized by the time-domain transformer. We conducted experiments on the Voice Bank + DEMAND dataset to evaluate the proposed method. Experimental results show that the proposed method outperforms the current state-of-the-arts in terms of PESQ, STOI, CSIG, COVL. (The PESQ, STOI, CSIG, and COVL scores on the Voice Bank + DEMAND dataset were 3.30, 0.95, 4.51, and 3.94, respectively).

  Access Paper or Ask Questions