Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"speech": models, code, and papers

Characterizing the adversarial vulnerability of speech self-supervised learning

Nov 08, 2021
Haibin Wu, Bo Zheng, Xu Li, Xixin Wu, Hung-yi Lee, Helen Meng

A leaderboard named Speech processing Universal PERformance Benchmark (SUPERB), which aims at benchmarking the performance of a shared self-supervised learning (SSL) speech model across various downstream speech tasks with minimal modification of architectures and small amount of data, has fueled the research for speech representation learning. The SUPERB demonstrates speech SSL upstream models improve the performance of various downstream tasks through just minimal adaptation. As the paradigm of the self-supervised learning upstream model followed by downstream tasks arouses more attention in the speech community, characterizing the adversarial robustness of such paradigm is of high priority. In this paper, we make the first attempt to investigate the adversarial vulnerability of such paradigm under the attacks from both zero-knowledge adversaries and limited-knowledge adversaries. The experimental results illustrate that the paradigm proposed by SUPERB is seriously vulnerable to limited-knowledge adversaries, and the attacks generated by zero-knowledge adversaries are with transferability. The XAB test verifies the imperceptibility of crafted adversarial attacks.


  Access Paper or Ask Questions

Whispered and Lombard Neural Speech Synthesis

Jan 13, 2021
Qiong Hu, Tobias Bleisch, Petko Petkov, Tuomo Raitio, Erik Marchi, Varun Lakshminarasimhan

It is desirable for a text-to-speech system to take into account the environment where synthetic speech is presented, and provide appropriate context-dependent output to the user. In this paper, we present and compare various approaches for generating different speaking styles, namely, normal, Lombard, and whisper speech, using only limited data. The following systems are proposed and assessed: 1) Pre-training and fine-tuning a model for each style. 2) Lombard and whisper speech conversion through a signal processing based approach. 3) Multi-style generation using a single model based on a speaker verification model. Our mean opinion score and AB preference listening tests show that 1) we can generate high quality speech through the pre-training/fine-tuning approach for all speaking styles. 2) Although our speaker verification (SV) model is not explicitly trained to discriminate different speaking styles, and no Lombard and whisper voice is used for pre-training this system, the SV model can be used as a style encoder for generating different style embeddings as input for the Tacotron system. We also show that the resulting synthetic Lombard speech has a significant positive impact on intelligibility gain.

* To appear in SLT 2021 

  Access Paper or Ask Questions

Analyzing Large Receptive Field Convolutional Networks for Distant Speech Recognition

Oct 15, 2019
Salar Jafarlou, Soheil Khorram, Vinay Kothapally, John H. L. Hansen

Despite significant efforts over the last few years to build a robust automatic speech recognition (ASR) system for different acoustic settings, the performance of the current state-of-the-art technologies significantly degrades in noisy reverberant environments. Convolutional Neural Networks (CNNs) have been successfully used to achieve substantial improvements in many speech processing applications including distant speech recognition (DSR). However, standard CNN architectures were not efficient in capturing long-term speech dynamics, which are essential in the design of a robust DSR system. In the present study, we address this issue by investigating variants of large receptive field CNNs (LRF-CNNs) which include deeply recursive networks, dilated convolutional neural networks, and stacked hourglass networks. To compare the efficacy of the aforementioned architectures with the standard CNN for Wall Street Journal (WSJ) corpus, we use a hybrid DNN-HMM based speech recognition system. We extend the study to evaluate the system performances for distant speech simulated using realistic room impulse responses (RIRs). Our experiments show that with fixed number of parameters across all architectures, the large receptive field networks show consistent improvements over the standard CNNs for distant speech. Amongst the explored LRF-CNNs, stacked hourglass network has shown improvements with a 8.9% relative reduction in word error rate (WER) and 10.7% relative improvement in frame accuracy compared to the standard CNNs for distant simulated speech signals.

* ASRU 2019 

  Access Paper or Ask Questions

Extracting Different Levels of Speech Information from EEG Using an LSTM-Based Model

Jun 17, 2021
Mohammad Jalilpour Monesi, Bernd Accou, Tom Francart, Hugo Van Hamme

Decoding the speech signal that a person is listening to from the human brain via electroencephalography (EEG) can help us understand how our auditory system works. Linear models have been used to reconstruct the EEG from speech or vice versa. Recently, Artificial Neural Networks (ANNs) such as Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) based architectures have outperformed linear models in modeling the relation between EEG and speech. Before attempting to use these models in real-world applications such as hearing tests or (second) language comprehension assessment we need to know what level of speech information is being utilized by these models. In this study, we aim to analyze the performance of an LSTM-based model using different levels of speech features. The task of the model is to determine which of two given speech segments is matched with the recorded EEG. We used low- and high-level speech features including: envelope, mel spectrogram, voice activity, phoneme identity, and word embedding. Our results suggest that the model exploits information about silences, intensity, and broad phonetic classes from the EEG. Furthermore, the mel spectrogram, which contains all this information, yields the highest accuracy (84%) among all the features.


  Access Paper or Ask Questions

Synthesising 3D Facial Motion from "In-the-Wild" Speech

Apr 15, 2019
Panagiotis Tzirakis, Athanasios Papaioannou, Alexander Lattas, Michail Tarasiou, Björn Schuller, Stefanos Zafeiriou

Synthesising 3D facial motion from speech is a crucial problem manifesting in a multitude of applications such as computer games and movies. Recently proposed methods tackle this problem in controlled conditions of speech. In this paper, we introduce the first methodology for 3D facial motion synthesis from speech captured in arbitrary recording conditions ("in-the-wild") and independent of the speaker. For our purposes, we captured 4D sequences of people uttering 500 words, contained in the Lip Reading Words (LRW) a publicly available large-scale in-the-wild dataset, and built a set of 3D blendshapes appropriate for speech. We correlate the 3D shape parameters of the speech blendshapes to the LRW audio samples by means of a novel time-warping technique, named Deep Canonical Attentional Warping (DCAW), that can simultaneously learn hierarchical non-linear representations and a warping path in an end-to-end manner. We thoroughly evaluate our proposed methods, and show the ability of a deep learning model to synthesise 3D facial motion in handling different speakers and continuous speech signals in uncontrolled conditions.


  Access Paper or Ask Questions

TinySpeech: Attention Condensers for Deep Speech Recognition Neural Networks on Edge Devices

Aug 11, 2020
Alexander Wong, Mahmoud Famouri, Maya Pavlova, Siddharth Surana

Advances in deep learning have led to state-of-the-art performance across a multitude of speech recognition tasks. Nevertheless, the widespread deployment of deep neural networks for on-device speech recognition remains a challenge, particularly in edge scenarios where the memory and computing resources are highly constrained (e.g., low-power embedded devices) or where the memory and computing budget dedicated to speech recognition is low (e.g., mobile devices performing numerous tasks besides speech recognition). In this study, we introduce the concept of attention condensers for building low-footprint, highly-efficient deep neural networks for on-device speech recognition on the edge. More specifically, an attention condenser is a self-attention mechanism that learns and produces a condensed embedding characterizing joint local and cross-channel activation relationships, and performs adaptive activation recalibration accordingly for selective concentration. To illustrate its efficacy, we introduce TinySpeech, low-precision deep neural networks comprising largely of attention condensers tailored for on-device speech recognition using a machine-driven design exploration strategy. Experimental results on the Google Speech Commands benchmark dataset for limited-vocabulary speech recognition showed that TinySpeech networks achieved significantly lower architectural complexity (as much as $207\times$ fewer parameters) and lower computational complexity (as much as $21\times$ fewer multiply-add operations) when compared to previous deep neural networks in research literature. These results not only demonstrate the efficacy of attention condensers for building highly efficient deep neural networks for on-device speech recognition, but also illuminate its potential for accelerating deep learning on the edge and empowering a wide range of TinyML applications.

* 8 pages 

  Access Paper or Ask Questions

EML Online Speech Activity Detection for the Fearless Steps Challenge Phase-III

Jun 21, 2021
Omid Ghahabi, Volker Fischer

Speech Activity Detection (SAD), locating speech segments within an audio recording, is a main part of most speech technology applications. Robust SAD is usually more difficult in noisy conditions with varying signal-to-noise ratios (SNR). The Fearless Steps challenge has recently provided such data from the NASA Apollo-11 mission for different speech processing tasks including SAD. Most audio recordings are degraded by different kinds and levels of noise varying within and between channels. This paper describes the EML online algorithm for the most recent phase of this challenge. The proposed algorithm can be trained both in a supervised and unsupervised manner and assigns speech and non-speech labels at runtime approximately every 0.1 sec. The experimental results show a competitive accuracy on both development and evaluation datasets with a real-time factor of about 0.002 using a single CPU machine.


  Access Paper or Ask Questions

Towards Language Modelling in the Speech Domain Using Sub-word Linguistic Units

Oct 31, 2021
Anurag Katakkar, Alan W Black

Language models (LMs) for text data have been studied extensively for their usefulness in language generation and other downstream tasks. However, language modelling purely in the speech domain is still a relatively unexplored topic, with traditional speech LMs often depending on auxiliary text LMs for learning distributional aspects of the language. For the English language, these LMs treat words as atomic units, which presents inherent challenges to language modelling in the speech domain. In this paper, we propose a novel LSTM-based generative speech LM that is inspired by the CBOW model and built on linguistic units including syllables and phonemes. This offers better acoustic consistency across utterances in the dataset, as opposed to single melspectrogram frames, or whole words. With a limited dataset, orders of magnitude smaller than that required by contemporary generative models, our model closely approximates babbling speech. We show the effect of training with auxiliary text LMs, multitask learning objectives, and auxiliary articulatory features. Through our experiments, we also highlight some well known, but poorly documented challenges in training generative speech LMs, including the mismatch between the supervised learning objective with which these models are trained such as Mean Squared Error (MSE), and the true objective, which is speech quality. Our experiments provide an early indication that while validation loss and Mel Cepstral Distortion (MCD) are not strongly correlated with generated speech quality, traditional text language modelling metrics like perplexity and next-token-prediction accuracy might be.


  Access Paper or Ask Questions

Evaluating Long-form Text-to-Speech: Comparing the Ratings of Sentences and Paragraphs

Sep 09, 2019
Rob Clark, Hanna Silen, Tom Kenter, Ralph Leith

Text-to-speech systems are typically evaluated on single sentences. When long-form content, such as data consisting of full paragraphs or dialogues is considered, evaluating sentences in isolation is not always appropriate as the context in which the sentences are synthesized is missing. In this paper, we investigate three different ways of evaluating the naturalness of long-form text-to-speech synthesis. We compare the results obtained from evaluating sentences in isolation, evaluating whole paragraphs of speech, and presenting a selection of speech or text as context and evaluating the subsequent speech. We find that, even though these three evaluations are based upon the same material, the outcomes differ per setting, and moreover that these outcomes do not necessarily correlate with each other. We show that our findings are consistent between a single speaker setting of read paragraphs and a two-speaker dialogue scenario. We conclude that to evaluate the quality of long-form speech, the traditional way of evaluating sentences in isolation does not suffice, and that multiple evaluations are required.

* Accepted for The 10th ISCA Speech Synthesis Workshop (SSW10), 6 pages 

  Access Paper or Ask Questions

Speaker Re-identification with Speaker Dependent Speech Enhancement

May 15, 2020
Yanpei Shi, Qiang Huang, Thomas Hain

While the use of deep neural networks has significantly boosted speaker recognition performance, it is still challenging to separate speakers in poor acoustic environments. Here speech enhancement methods have traditionally allowed improved performance. The recent works have shown that adapting speech enhancement can lead to further gains. This paper introduces a novel approach that cascades speech enhancement and speaker recognition. In the first step, a speaker embedding vector is generated , which is used in the second step to enhance the speech quality and re-identify the speakers. Models are trained in an integrated framework with joint optimisation. The proposed approach is evaluated using the Voxceleb1 dataset, which aims to assess speaker recognition in real world situations. In addition three types of noise at different signal-noise-ratios were added for this work. The obtained results show that the proposed approach using speaker dependent speech enhancement can yield better speaker recognition and speech enhancement performances than two baselines in various noise conditions.

* Submitted to Interspeech2020 

  Access Paper or Ask Questions

<<
49
50
51
52
53
54
55
56
57
58
59
60
61
>>