Recently, deep clustering (DPCL) based speaker-independent speech separation has drawn much attention, since it needs little speaker prior information. However, it still has much room of improvement, particularly in reverberant environments. If the training and test environments mismatch which is a common case, the embedding vectors produced by DPCL may contain much noise and many small variations. To deal with the problem, we propose a variant of DPCL, named DPCL++, by applying a recent unsupervised deep learning method---multilayer bootstrap networks(MBN)---to further reduce the noise and small variations of the embedding vectors in an unsupervised way in the test stage, which fascinates k-means to produce a good result. MBN builds a gradually narrowed network from bottom-up via a stack of k-centroids clustering ensembles, where the k-centroids clusterings are trained independently by random sampling and one-nearest-neighbor optimization. To further improve the robustness of DPCL++ in reverberant environments, we take spatial features as part of its input. Experimental results demonstrate the effectiveness of the proposed method.
We explore pretraining strategies including choice of base corpus with the aim of choosing the best strategy for zero-shot multi-speaker end-to-end synthesis. We also examine choice of neural vocoder for waveform synthesis, as well as acoustic configurations used for mel spectrograms and final audio output. We find that fine-tuning a multi-speaker model from found audiobook data that has passed a simple quality threshold can improve naturalness and similarity to unseen target speakers of synthetic speech. Additionally, we find that listeners can discern between a 16kHz and 24kHz sampling rate, and that WaveRNN produces output waveforms of a comparable quality to WaveNet, with a faster inference time.
Recently neural architecture search(NAS) has been successfully used in image classification, natural language processing, and automatic speech recognition(ASR) tasks for finding the state-of-the-art(SOTA) architectures than those human-designed architectures. NAS can derive a SOTA and data-specific architecture over validation data from a pre-defined search space with a search algorithm. Inspired by the success of NAS in ASR tasks, we propose a NAS-based ASR framework containing one search space and one differentiable search algorithm called Differentiable Architecture Search(DARTS). Our search space follows the convolution-augmented transformer(Conformer) backbone, which is a more expressive ASR architecture than those used in existing NAS-based ASR frameworks. To improve the performance of our method, a regulation method called Dynamic Search Schedule(DSS) is employed. On a widely used Mandarin benchmark AISHELL-1, our best-searched architecture outperforms the baseline Conform model significantly with about 11% CER relative improvement, and our method is proved to be pretty efficient by the search cost comparisons.
In this paper, a data augmentation method is proposed for depression detection from speech signals. Samples for data augmentation were created by changing the frame-width and the frame-shift parameters during the feature extraction process. Unlike other data augmentation methods (such as VTLP, pitch perturbation, or speed perturbation), the proposed method does not explicitly change acoustic parameters but rather the time-frequency resolution of frame-level features. The proposed method was evaluated using two different datasets, models, and input acoustic features. For the DAIC-WOZ (English) dataset when using the DepAudioNet model and mel-Spectrograms as input, the proposed method resulted in an improvement of 5.97% (validation) and 25.13% (test) when compared to the baseline. The improvements for the CONVERGE (Mandarin) dataset when using the x-vector embeddings with CNN as the backend and MFCCs as input features were 9.32% (validation) and 12.99% (test). Baseline systems do not incorporate any data augmentation. Further, the proposed method outperformed commonly used data-augmentation methods such as noise augmentation, VTLP, Speed, and Pitch Perturbation. All improvements were statistically significant.
In this work, we present an extensive study on the use of pre-trained language models for the task of automatic Counter Narrative (CN) generation to fight online hate speech in English. We first present a comparative study to determine whether there is a particular Language Model (or class of LMs) and a particular decoding mechanism that are the most appropriate to generate CNs. Findings show that autoregressive models combined with stochastic decodings are the most promising. We then investigate how an LM performs in generating a CN with regard to an unseen target of hate. We find out that a key element for successful `out of target' experiments is not an overall similarity with the training data but the presence of a specific subset of training data, i.e. a target that shares some commonalities with the test target that can be defined a-priori. We finally introduce the idea of a pipeline based on the addition of an automatic post-editing step to refine generated CNs.
One of the challenges in Speech Emotion Recognition (SER) "in the wild" is the large mismatch between training and test data (e.g. speakers and tasks). In order to improve the generalisation capabilities of the emotion models, we propose to use Multi-Task Learning (MTL) and use gender and naturalness as auxiliary tasks in deep neural networks. This method was evaluated in within-corpus and various cross-corpus classification experiments that simulate conditions "in the wild". In comparison to Single-Task Learning (STL) based state of the art methods, we found that our MTL method proposed improved performance significantly. Particularly, models using both gender and naturalness achieved more gains than those using either gender or naturalness separately. This benefit was also found in the high-level representations of the feature space, obtained from our method proposed, where discriminative emotional clusters could be observed.
This paper describes Centre for Development of Advanced Computing's (CDACM) submission to the shared task-'Tool Contest on POS tagging for Code-Mixed Indian Social Media (Facebook, Twitter, and Whatsapp) Text', collocated with ICON-2016. The shared task was to predict Part of Speech (POS) tag at word level for a given text. The code-mixed text is generated mostly on social media by multilingual users. The presence of the multilingual words, transliterations, and spelling variations make such content linguistically complex. In this paper, we propose an approach to POS tag code-mixed social media text using Recurrent Neural Network Language Model (RNN-LM) architecture. We submitted the results for Hindi-English (hi-en), Bengali-English (bn-en), and Telugu-English (te-en) code-mixed data.
One of the leading single-channel speech separation (SS) models is based on a TasNet with a dual-path segmentation technique, where the size of each segment remains unchanged throughout all layers. In contrast, our key finding is that multi-granularity features are essential for enhancing contextual modeling and computational efficiency. We introduce a self-attentive network with a novel sandglass-shape, namely Sandglasset, which advances the state-of-the-art (SOTA) SS performance at significantly smaller model size and computational cost. Forward along each block inside Sandglasset, the temporal granularity of the features gradually becomes coarser until reaching half of the network blocks, and then successively turns finer towards the raw signal level. We also unfold that residual connections between features with the same granularity are critical for preserving information after passing through the bottleneck layer. Experiments show our Sandglasset with only 2.3M parameters has achieved the best results on two benchmark SS datasets -- WSJ0-2mix and WSJ0-3mix, where the SI-SNRi scores have been improved by absolute 0.8 dB and 2.4 dB, respectively, comparing to the prior SOTA results.