Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"speech": models, code, and papers

Closing the Gap Between Time-Domain Multi-Channel Speech Enhancement on Real and Simulation Conditions

Oct 27, 2021
Wangyou Zhang, Jing Shi, Chenda Li, Shinji Watanabe, Yanmin Qian

The deep learning based time-domain models, e.g. Conv-TasNet, have shown great potential in both single-channel and multi-channel speech enhancement. However, many experiments on the time-domain speech enhancement model are done in simulated conditions, and it is not well studied whether the good performance can generalize to real-world scenarios. In this paper, we aim to provide an insightful investigation of applying multi-channel Conv-TasNet based speech enhancement to both simulation and real data. Our preliminary experiments show a large performance gap between the two conditions in terms of the ASR performance. Several approaches are applied to close this gap, including the integration of multi-channel Conv-TasNet into the beamforming model with various strategies, and the joint training of speech enhancement and speech recognition models. Our experiments on the CHiME-4 corpus show that our proposed approaches can greatly reduce the speech recognition performance discrepancy between simulation and real data, while preserving the strong speech enhancement capability in the frontend.

* 5 pages, 3 figures, accepted by IEEE WASPAA 2021 

  Access Paper or Ask Questions

Surfacing contextual hate speech words within social media

Nov 28, 2017
Jherez Taylor, Melvyn Peignon, Yi-Shin Chen

Social media platforms have recently seen an increase in the occurrence of hate speech discourse which has led to calls for improved detection methods. Most of these rely on annotated data, keywords, and a classification technique. While this approach provides good coverage, it can fall short when dealing with new terms produced by online extremist communities which act as original sources of words which have alternate hate speech meanings. These code words (which can be both created and adopted words) are designed to evade automatic detection and often have benign meanings in regular discourse. As an example, "skypes", "googles", and "yahoos" are all instances of words which have an alternate meaning that can be used for hate speech. This overlap introduces additional challenges when relying on keywords for both the collection of data that is specific to hate speech, and downstream classification. In this work, we develop a community detection approach for finding extremist hate speech communities and collecting data from their members. We also develop a word embedding model that learns the alternate hate speech meaning of words and demonstrate the candidacy of our code words with several annotation experiments, designed to determine if it is possible to recognize a word as being used for hate speech without knowing its alternate meaning. We report an inter-annotator agreement rate of K=0.871, and K=0.676 for data drawn from our extremist community and the keyword approach respectively, supporting our claim that hate speech detection is a contextual task and does not depend on a fixed list of keywords. Our goal is to advance the domain by providing a high quality hate speech dataset in addition to learned code words that can be fed into existing classification approaches, thus improving the accuracy of automated detection.

  Access Paper or Ask Questions

A review of on-device fully neural end-to-end automatic speech recognition algorithms

Dec 19, 2020
Chanwoo Kim, Dhananjaya Gowda, Dongsoo Lee, Jiyeon Kim, Ankur Kumar, Sungsoo Kim, Abhinav Garg, Changwoo Han

In this paper, we review various end-to-end automatic speech recognition algorithms and their optimization techniques for on-device applications. Conventional speech recognition systems comprise a large number of discrete components such as an acoustic model, a language model, a pronunciation model, a text-normalizer, an inverse-text normalizer, a decoder based on a Weighted Finite State Transducer (WFST), and so on. To obtain sufficiently high speech recognition accuracy with such conventional speech recognition systems, a very large language model (up to 100 GB) is usually needed. Hence, the corresponding WFST size becomes enormous, which prohibits their on-device implementation. Recently, fully neural network end-to-end speech recognition algorithms have been proposed. Examples include speech recognition systems based on Connectionist Temporal Classification (CTC), Recurrent Neural Network Transducer (RNN-T), Attention-based Encoder-Decoder models (AED), Monotonic Chunk-wise Attention (MoChA), transformer-based speech recognition systems, and so on. These fully neural network-based systems require much smaller memory footprints compared to conventional algorithms, therefore their on-device implementation has become feasible. In this paper, we review such end-to-end speech recognition models. We extensively discuss their structures, performance, and advantages compared to conventional algorithms.

* Accepted as an invited paper to the Asilomar Conference on Signals, Systems, and Computers 2020 

  Access Paper or Ask Questions

Three-class Overlapped Speech Detection using a Convolutional Recurrent Neural Network

Apr 07, 2021
Jee-weon Jung, Hee-Soo Heo, Youngki Kwon, Joon Son Chung, Bong-Jin Lee

In this work, we propose an overlapped speech detection system trained as a three-class classifier. Unlike conventional systems that perform binary classification as to whether or not a frame contains overlapped speech, the proposed approach classifies into three classes: non-speech, single speaker speech, and overlapped speech. By training a network with the more detailed label definition, the model can learn a better notion on deciding the number of speakers included in a given frame. A convolutional recurrent neural network architecture is explored to benefit from both convolutional layer's capability to model local patterns and recurrent layer's ability to model sequential information. The proposed overlapped speech detection model establishes a state-of-the-art performance with a precision of 0.6648 and a recall of 0.3222 on the DIHARD II evaluation set, showing a 20% increase in recall along with higher precision. In addition, we also introduce a simple approach to utilize the proposed overlapped speech detection model for speaker diarization which ranked third place in the Track 1 of the DIHARD III challenge.

* 5 pages, 2 figures, 4 tables, submitted to Interspeech as a conference paper 

  Access Paper or Ask Questions

Training Keyword Spotters with Limited and Synthesized Speech Data

Jan 31, 2020
James Lin, Kevin Kilgour, Dominik Roblek, Matthew Sharifi

With the rise of low power speech-enabled devices, there is a growing demand to quickly produce models for recognizing arbitrary sets of keywords. As with many machine learning tasks, one of the most challenging parts in the model creation process is obtaining a sufficient amount of training data. In this paper, we explore the effectiveness of synthesized speech data in training small, spoken term detection models of around 400k parameters. Instead of training such models directly on the audio or low level features such as MFCCs, we use a pre-trained speech embedding model trained to extract useful features for keyword spotting models. Using this speech embedding, we show that a model which detects 10 keywords when trained on only synthetic speech is equivalent to a model trained on over 500 real examples. We also show that a model without our speech embeddings would need to be trained on over 4000 real examples to reach the same accuracy.

  Access Paper or Ask Questions

Visually grounded cross-lingual keyword spotting in speech

Jun 13, 2018
Herman Kamper, Michael Roth

Recent work considered how images paired with speech can be used as supervision for building speech systems when transcriptions are not available. We ask whether visual grounding can be used for cross-lingual keyword spotting: given a text keyword in one language, the task is to retrieve spoken utterances containing that keyword in another language. This could enable searching through speech in a low-resource language using text queries in a high-resource language. As a proof-of-concept, we use English speech with German queries: we use a German visual tagger to add keyword labels to each training image, and then train a neural network to map English speech to German keywords. Without seeing parallel speech-transcriptions or translations, the model achieves a precision at ten of 58%. We show that most erroneous retrievals contain equivalent or semantically relevant keywords; excluding these would improve [email protected] to 91%.

* 5 pages, 2 figures, 4 tables 

  Access Paper or Ask Questions

Batch-normalized joint training for DNN-based distant speech recognition

Mar 24, 2017
Mirco Ravanelli, Philemon Brakel, Maurizio Omologo, Yoshua Bengio

Improving distant speech recognition is a crucial step towards flexible human-machine interfaces. Current technology, however, still exhibits a lack of robustness, especially when adverse acoustic conditions are met. Despite the significant progress made in the last years on both speech enhancement and speech recognition, one potential limitation of state-of-the-art technology lies in composing modules that are not well matched because they are not trained jointly. To address this concern, a promising approach consists in concatenating a speech enhancement and a speech recognition deep neural network and to jointly update their parameters as if they were within a single bigger network. Unfortunately, joint training can be difficult because the output distribution of the speech enhancement system may change substantially during the optimization procedure. The speech recognition module would have to deal with an input distribution that is non-stationary and unnormalized. To mitigate this issue, we propose a joint training approach based on a fully batch-normalized architecture. Experiments, conducted using different datasets, tasks and acoustic conditions, revealed that the proposed framework significantly overtakes other competitive solutions, especially in challenging environments.

* arXiv admin note: text overlap with arXiv:1703.08002 

  Access Paper or Ask Questions

Audio-Visual Speech Inpainting with Deep Learning

Oct 09, 2020
Giovanni Morrone, Daniel Michelsanti, Zheng-Hua Tan, Jesper Jensen

In this paper, we present a deep-learning-based framework for audio-visual speech inpainting, i.e., the task of restoring the missing parts of an acoustic speech signal from reliable audio context and uncorrupted visual information. Recent work focuses solely on audio-only methods and generally aims at inpainting music signals, which show highly different structure than speech. Instead, we inpaint speech signals with gaps ranging from 100 ms to 1600 ms to investigate the contribution that vision can provide for gaps of different duration. We also experiment with a multi-task learning approach where a phone recognition task is learned together with speech inpainting. Results show that the performance of audio-only speech inpainting approaches degrades rapidly when gaps get large, while the proposed audio-visual approach is able to plausibly restore missing information. In addition, we show that multi-task learning is effective, although the largest contribution to performance comes from vision.

  Access Paper or Ask Questions

Lip-Reading Driven Deep Learning Approach for Speech Enhancement

Jul 31, 2018
Ahsan Adeel, Mandar Gogate, Amir Hussain, William M. Whitmer

This paper proposes a novel lip-reading driven deep learning framework for speech enhancement. The proposed approach leverages the complementary strengths of both deep learning and analytical acoustic modelling (filtering based approach) as compared to recently published, comparatively simpler benchmark approaches that rely only on deep learning. The proposed audio-visual (AV) speech enhancement framework operates at two levels. In the first level, a novel deep learning-based lip-reading regression model is employed. In the second level, lip-reading approximated clean-audio features are exploited, using an enhanced, visually-derived Wiener filter (EVWF), for the clean audio power spectrum estimation. Specifically, a stacked long-short-term memory (LSTM) based lip-reading regression model is designed for clean audio features estimation using only temporal visual features considering different number of prior visual frames. For clean speech spectrum estimation, a new filterbank-domain EVWF is formulated, which exploits estimated speech features. The proposed EVWF is compared with conventional Spectral Subtraction and Log-Minimum Mean-Square Error methods using both ideal AV mapping and LSTM driven AV mapping. The potential of the proposed speech enhancement framework is evaluated under different dynamic real-world commercially-motivated scenarios (e.g. cafe, public transport, pedestrian area) at different SNR levels (ranging from low to high SNRs) using benchmark Grid and ChiME3 corpora. For objective testing, perceptual evaluation of speech quality is used to evaluate the quality of restored speech. For subjective testing, the standard mean-opinion-score method is used with inferential statistics. Comparative simulation results demonstrate significant lip-reading and speech enhancement improvement in terms of both speech quality and speech intelligibility.

* 11 pages, 13 figures 

  Access Paper or Ask Questions