Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"speech": models, code, and papers

A Dataset for Speech Emotion Recognition in Greek Theatrical Plays

Mar 27, 2022
Maria Moutti, Sofia Eleftheriou, Panagiotis Koromilas, Theodoros Giannakopoulos

Machine learning methodologies can be adopted in cultural applications and propose new ways to distribute or even present the cultural content to the public. For instance, speech analytics can be adopted to automatically generate subtitles in theatrical plays, in order to (among other purposes) help people with hearing loss. Apart from a typical speech-to-text transcription with Automatic Speech Recognition (ASR), Speech Emotion Recognition (SER) can be used to automatically predict the underlying emotional content of speech dialogues in theatrical plays, and thus to provide a deeper understanding how the actors utter their lines. However, real-world datasets from theatrical plays are not available in the literature. In this work we present GreThE, the Greek Theatrical Emotion dataset, a new publicly available data collection for speech emotion recognition in Greek theatrical plays. The dataset contains utterances from various actors and plays, along with respective valence and arousal annotations. Towards this end, multiple annotators have been asked to provide their input for each speech recording and inter-annotator agreement is taken into account in the final ground truth generation. In addition, we discuss the results of some indicative experiments that have been conducted with machine and deep learning frameworks, using the dataset, along with some widely used databases in the field of speech emotion recognition.

  Access Paper or Ask Questions

End-to-End Multi-Speaker Speech Recognition using Speaker Embeddings and Transfer Learning

Aug 13, 2019
Pavel Denisov, Ngoc Thang Vu

This paper presents our latest investigation on end-to-end automatic speech recognition (ASR) for overlapped speech. We propose to train an end-to-end system conditioned on speaker embeddings and further improved by transfer learning from clean speech. This proposed framework does not require any parallel non-overlapped speech materials and is independent of the number of speakers. Our experimental results on overlapped speech datasets show that joint conditioning on speaker embeddings and transfer learning significantly improves the ASR performance.

* Interspeech 2019 

  Access Paper or Ask Questions

SLNSpeech: solving extended speech separation problem by the help of sign language

Jul 21, 2020
Jiasong Wu, Taotao Li, Youyong Kong, Guanyu Yang, Lotfi Senhadji, Huazhong Shu

A speech separation task can be roughly divided into audio-only separation and audio-visual separation. In order to make speech separation technology applied in the real scenario of the disabled, this paper presents an extended speech separation problem which refers in particular to sign language assisted speech separation. However, most existing datasets for speech separation are audios and videos which contain audio and/or visual modalities. To address the extended speech separation problem, we introduce a large-scale dataset named Sign Language News Speech (SLNSpeech) dataset in which three modalities of audio, visual, and sign language are coexisted. Then, we design a general deep learning network for the self-supervised learning of three modalities, particularly, using sign language embeddings together with audio or audio-visual information for better solving the speech separation task. Specifically, we use 3D residual convolutional network to extract sign language features and use pretrained VGGNet model to exact visual features. After that, an improved U-Net with skip connections in feature extraction stage is applied for learning the embeddings among the mixed spectrogram transformed from source audios, the sign language features and visual features. Experiments results show that, besides visual modality, sign language modality can also be used alone to supervise speech separation task. Moreover, we also show the effectiveness of sign language assisted speech separation when the visual modality is disturbed. Source code will be released in

* 33 pages, 8 figures, 5 tables 

  Access Paper or Ask Questions

SpeechFormer: A Hierarchical Efficient Framework Incorporating the Characteristics of Speech

Mar 10, 2022
Weidong Chen, Xiaofen Xing, Xiangmin Xu, Jianxin Pang, Lan Du

Transformer has obtained promising results on cognitive speech signal processing field, which is of interest in various applications ranging from emotion to neurocognitive disorder analysis. However, most works treat speech signal as a whole, leading to the neglect of the pronunciation structure that is unique to speech and reflects the cognitive process. Meanwhile, Transformer has heavy computational burden due to its full attention operation. In this paper, a hierarchical efficient framework, called SpeechFormer, which considers the structural characteristics of speech, is proposed and can be served as a general-purpose backbone for cognitive speech signal processing. The proposed SpeechFormer consists of frame, phoneme, word and utterance stages in succession, each performing a neighboring attention according to the structural pattern of speech with high computational efficiency. SpeechFormer is evaluated on speech emotion recognition (IEMOCAP & MELD) and neurocognitive disorder detection (Pitt & DAIC-WOZ) tasks, and the results show that SpeechFormer outperforms the standard Transformer-based framework while greatly reducing the computational cost. Furthermore, our SpeechFormer achieves comparable results to the state-of-the-art approaches.

* 5 pages, 4figures. This paper was submitted to Insterspeech 2022 

  Access Paper or Ask Questions

Isolated and Ensemble Audio Preprocessing Methods for Detecting Adversarial Examples against Automatic Speech Recognition

Sep 11, 2018
Krishan Rajaratnam, Kunal Shah, Jugal Kalita

An adversarial attack is an exploitative process in which minute alterations are made to natural inputs, causing the inputs to be misclassified by neural models. In the field of speech recognition, this has become an issue of increasing significance. Although adversarial attacks were originally introduced in computer vision, they have since infiltrated the realm of speech recognition. In 2017, a genetic attack was shown to be quite potent against the Speech Commands Model. Limited-vocabulary speech classifiers, such as the Speech Commands Model, are used in a variety of applications, particularly in telephony; as such, adversarial examples produced by this attack pose as a major security threat. This paper explores various methods of detecting these adversarial examples with combinations of audio preprocessing. One particular combined defense incorporating compressions, speech coding, filtering, and audio panning was shown to be quite effective against the attack on the Speech Commands Model, detecting audio adversarial examples with 93.5% precision and 91.2% recall.

* Accepted for oral presentation at the 30th Conference on Computational Linguistics and Speech Processing (ROCLING 2018) 

  Access Paper or Ask Questions

Can We Trust Deep Speech Prior?

Nov 04, 2020
Ying Shi, Haolin Chen, Zhiyuan Tang, Lantian Li, Dong Wang, Jiqing Han

Recently, speech enhancement (SE) based on deep speech prior has attracted much attention, such as the variational auto-encoder with non-negative matrix factorization (VAE-NMF) architecture. Compared to conventional approaches that represent clean speech by shallow models such as Gaussians with a low-rank covariance, the new approach employs deep generative models to represent the clean speech, which often provides a better prior. Despite the clear advantage in theory, we argue that deep priors must be used with much caution, since the likelihood produced by a deep generative model does not always coincide with the speech quality. We designed a comprehensive study on this issue and demonstrated that based on deep speech priors, a reasonable SE performance can be achieved, but the results might be suboptimal. A careful analysis showed that this problem is deeply rooted in the disharmony between the flexibility of deep generative models and the nature of the maximum-likelihood (ML) training.

* To be published in IEEE SLT 2021 

  Access Paper or Ask Questions

Cognitive Coding of Speech

Oct 08, 2021
Reza Lotfidereshgi, Philippe Gournay

We propose an approach for cognitive coding of speech by unsupervised extraction of contextual representations in two hierarchical levels of abstraction. Speech attributes such as phoneme identity that last one hundred milliseconds or less are captured in the lower level of abstraction, while speech attributes such as speaker identity and emotion that persist up to one second are captured in the higher level of abstraction. This decomposition is achieved by a two-stage neural network, with a lower and an upper stage operating at different time scales. Both stages are trained to predict the content of the signal in their respective latent spaces. A top-down pathway between stages further improves the predictive capability of the network. With an application in speech compression in mind, we investigate the effect of dimensionality reduction and low bitrate quantization on the extracted representations. The performance measured on the LibriSpeech and EmoV-DB datasets reaches, and for some speech attributes even exceeds, that of state-of-the-art approaches.

  Access Paper or Ask Questions

HASA-net: A non-intrusive hearing-aid speech assessment network

Nov 10, 2021
Hsin-Tien Chiang, Yi-Chiao Wu, Cheng Yu, Tomoki Toda, Hsin-Min Wang, Yih-Chun Hu, Yu Tsao

Without the need of a clean reference, non-intrusive speech assessment methods have caught great attention for objective evaluations. Recently, deep neural network (DNN) models have been applied to build non-intrusive speech assessment approaches and confirmed to provide promising performance. However, most DNN-based approaches are designed for normal-hearing listeners without considering hearing-loss factors. In this study, we propose a DNN-based hearing aid speech assessment network (HASA-Net), formed by a bidirectional long short-term memory (BLSTM) model, to predict speech quality and intelligibility scores simultaneously according to input speech signals and specified hearing-loss patterns. To the best of our knowledge, HASA-Net is the first work to incorporate quality and intelligibility assessments utilizing a unified DNN-based non-intrusive model for hearing aids. Experimental results show that the predicted speech quality and intelligibility scores of HASA-Net are highly correlated to two well-known intrusive hearing-aid evaluation metrics, hearing aid speech quality index (HASQI) and hearing aid speech perception index (HASPI), respectively.

  Access Paper or Ask Questions

CoVoST 2: A Massively Multilingual Speech-to-Text Translation Corpus

Jul 20, 2020
Changhan Wang, Anne Wu, Juan Pino

Speech translation has recently become an increasingly popular topic of research, partly due to the development of benchmark datasets. Nevertheless, current datasets cover a limited number of languages. With the aim to foster research in massive multilingual speech translation and speech translation for low resource language pairs, we release CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. This represents the largest open dataset available to date from total volume and language coverage perspective. Data sanity checks provide evidence about the quality of the data, which is released under CC0 license. We also provide extensive speech recognition, bilingual and multilingual machine translation and speech translation baselines.

  Access Paper or Ask Questions

Conditional Diffusion Probabilistic Model for Speech Enhancement

Feb 10, 2022
Yen-Ju Lu, Zhong-Qiu Wang, Shinji Watanabe, Alexander Richard, Cheng Yu, Yu Tsao

Speech enhancement is a critical component of many user-oriented audio applications, yet current systems still suffer from distorted and unnatural outputs. While generative models have shown strong potential in speech synthesis, they are still lagging behind in speech enhancement. This work leverages recent advances in diffusion probabilistic models, and proposes a novel speech enhancement algorithm that incorporates characteristics of the observed noisy speech signal into the diffusion and reverse processes. More specifically, we propose a generalized formulation of the diffusion probabilistic model named conditional diffusion probabilistic model that, in its reverse process, can adapt to non-Gaussian real noises in the estimated speech signal. In our experiments, we demonstrate strong performance of the proposed approach compared to representative generative models, and investigate the generalization capability of our models to other datasets with noise characteristics unseen during training.

  Access Paper or Ask Questions