Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"speech": models, code, and papers

A Unified Framework for Speech Separation

Dec 17, 2019
Fahimeh Bahmaninezhad, Shi-Xiong Zhang, Yong Xu, Meng Yu, John H. L. Hansen, Dong Yu

Speech separation refers to extracting each individual speech source in a given mixed signal. Recent advancements in speech separation and ongoing research in this area, have made these approaches as promising techniques for pre-processing of naturalistic audio streams. After incorporating deep learning techniques into speech separation, performance on these systems is improving faster. The initial solutions introduced for deep learning based speech separation analyzed the speech signals into time-frequency domain with STFT; and then encoded mixed signals were fed into a deep neural network based separator. Most recently, new methods are introduced to separate waveform of the mixed signal directly without analyzing them using STFT. Here, we introduce a unified framework to include both spectrogram and waveform separations into a single structure, while being only different in the kernel function used to encode and decode the data; where, both can achieve competitive performance. This new framework provides flexibility; in addition, depending on the characteristics of the data, or limitations of the memory and latency can set the hyper-parameters to flow in a pipeline of the framework which fits the task properly. We extend single-channel speech separation into multi-channel framework with end-to-end training of the network while optimizing the speech separation criterion (i.e., Si-SNR) directly. We emphasize on how tied kernel functions for calculating spatial features, encoder, and decoder in multi-channel framework can be effective. We simulate spatialized reverberate data for both WSJ0 and LibriSpeech corpora here, and while these two sets of data are different in the matter of size and duration, the effect of capturing shorter and longer dependencies of previous/+future samples are studied in detail. We report SDR, Si-SNR and PESQ to evaluate the performance of developed solutions.

  Access Paper or Ask Questions

Understanding the Predictability of Gesture Parameters from Speech and their Perceptual Importance

Oct 02, 2020
Ylva Ferstl, Michael Neff, Rachel McDonnell

Gesture behavior is a natural part of human conversation. Much work has focused on removing the need for tedious hand-animation to create embodied conversational agents by designing speech-driven gesture generators. However, these generators often work in a black-box manner, assuming a general relationship between input speech and output motion. As their success remains limited, we investigate in more detail how speech may relate to different aspects of gesture motion. We determine a number of parameters characterizing gesture, such as speed and gesture size, and explore their relationship to the speech signal in a two-fold manner. First, we train multiple recurrent networks to predict the gesture parameters from speech to understand how well gesture attributes can be modeled from speech alone. We find that gesture parameters can be partially predicted from speech, and some parameters, such as path length, being predicted more accurately than others, like velocity. Second, we design a perceptual study to assess the importance of each gesture parameter for producing motion that people perceive as appropriate for the speech. Results show that a degradation in any parameter was viewed negatively, but some changes, such as hand shape, are more impactful than others. A video summarization can be found at

* To be published in the Proceedings of the 20th ACM International Conference on Intelligent Virtual Agents (IVA 20) 

  Access Paper or Ask Questions

THCHS-30 : A Free Chinese Speech Corpus

Dec 10, 2015
Dong Wang, Xuewei Zhang

Speech data is crucially important for speech recognition research. There are quite some speech databases that can be purchased at prices that are reasonable for most research institutes. However, for young people who just start research activities or those who just gain initial interest in this direction, the cost for data is still an annoying barrier. We support the `free data' movement in speech recognition: research institutes (particularly supported by public funds) publish their data freely so that new researchers can obtain sufficient data to kick of their career. In this paper, we follow this trend and release a free Chinese speech database THCHS-30 that can be used to build a full- edged Chinese speech recognition system. We report the baseline system established with this database, including the performance under highly noisy conditions.

  Access Paper or Ask Questions

Hidden-Markov-Model Based Speech Enhancement

Jul 04, 2017
Daniel Dzibela, Armin Sehr

The goal of this contribution is to use a parametric speech synthesis system for reducing background noise and other interferences from recorded speech signals. In a first step, Hidden Markov Models of the synthesis system are trained. Two adequate training corpora consisting of text and corresponding speech files have been set up and cleared of various faults, including inaudible utterances or incorrect assignments between audio and text data. Those are tested and compared against each other regarding e.g. flaws in the synthesized speech, it's naturalness and intelligibility. Thus different voices have been synthesized, whose quality depends less on the number of training samples used, but much more on the cleanliness and signal-to-noise ratio of those. Generalized voice models have been used for synthesis and the results greatly differ between the two speech corpora. Tests regarding the adaptation to different speakers show that a resemblance to the original speaker is audible throughout all recordings, yet the synthesized voices sound robotic and unnatural in smaller parts. The spoken text, however, is usually intelligible, which shows that the models are working well. In a novel approach, speech is synthesized using side information of the original audio signal, particularly the pitch frequency. Results show an increase of speech quality and intelligibility in comparison to speech synthesized solely from text, up to the point of being nearly indistinguishable from the original.

  Access Paper or Ask Questions

Joint Noise Reduction and Listening Enhancement for Full-End Speech Enhancement

Mar 22, 2022
Haoyu Li, Yun Liu, Junichi Yamagishi

Speech enhancement (SE) methods mainly focus on recovering clean speech from noisy input. In real-world speech communication, however, noises often exist in not only speaker but also listener environments. Although SE methods can suppress the noise contained in the speaker's voice, they cannot deal with the noise that is physically present in the listener side. To address such a complicated but common scenario, we investigate a deep learning-based joint framework integrating noise reduction (NR) with listening enhancement (LE), in which the NR module first suppresses noise and the LE module then modifies the denoised speech, i.e., the output of the NR module, to further improve speech intelligibility. The enhanced speech can thus be less noisy and more intelligible for listeners. Experimental results show that our proposed method achieves promising results and significantly outperforms the disjoint processing methods in terms of various speech evaluation metrics.

* Submitted to Interspeech 2022 

  Access Paper or Ask Questions

MAM: Masked Acoustic Modeling for End-to-End Speech-to-Text Translation

Oct 22, 2020
Junkun Chen, Mingbo Ma, Renjie Zheng, Liang Huang

End-to-end Speech-to-text Translation (E2E- ST), which directly translates source language speech to target language text, is widely useful in practice, but traditional cascaded approaches (ASR+MT) often suffer from error propagation in the pipeline. On the other hand, existing end-to-end solutions heavily depend on the source language transcriptions for pre-training or multi-task training with Automatic Speech Recognition (ASR). We instead propose a simple technique to learn a robust speech encoder in a self-supervised fashion only on the speech side, which can utilize speech data without transcription. This technique, termed Masked Acoustic Modeling (MAM), can also perform pre-training, for the first time, on any acoustic signals (including non-speech ones) without annotation. Compared with current state-of-the-art models on ST, our technique achieves +1.4 BLEU improvement without using transcriptions, and +1.2 BLEU using transcriptions. The pre-training of MAM with arbitrary acoustic signals also boosts the downstream speech-related tasks.

* 10 pages 

  Access Paper or Ask Questions

Improving Language Identification of Accented Speech

Apr 01, 2022
Kunnar Kukk, Tanel Alumäe

Language identification from speech is a common preprocessing step in many spoken language processing systems. In recent years, this field has seen a fast progress, mostly due to the use of self-supervised models pretrained on multilingual data and the use of large training corpora. This paper shows that for speech with a non-native or regional accent, the accuracy of spoken language identification systems drops dramatically, and that the accuracy of identifying the language is inversely correlated with the strength of the accent. We also show that using the output of a lexicon-free speech recognition system of the particular language helps to improve language identification performance on accented speech by a large margin, without sacrificing accuracy on native speech. We obtain relative error rate reductions ranging from to 35 to 63% over the state-of-the-art model across several non-native speech datasets.

* This paper has been submitted to Interspeech 2022 

  Access Paper or Ask Questions

Low Bit-Rate Wideband Speech Coding: A Deep Generative Model based Approach

Feb 04, 2021
Gang Min, Xiongwei Zhang, Xia Zou, Xiangyang Liu

Traditional low bit-rate speech coding approach only handles narrowband speech at 8kHz, which limits further improvements in speech quality. Motivated by recent successful exploration of deep learning methods for image and speech compression, this paper presents a new approach through vector quantization (VQ) of mel-frequency cepstral coefficients (MFCCs) and using a deep generative model called WaveGlow to provide efficient and high-quality speech coding. The coding feature is sorely an 80-dimension MFCCs vector for 16kHz wideband speech, then speech coding at the bit-rate throughout 1000-2000 bit/s could be scalably implemented by applying different VQ schemes for MFCCs vector. This new deep generative network based codec works fast as the WaveGlow model abandons the sample-by-sample autoregressive mechanism. We evaluated this new approach over the multi-speaker TIMIT corpus, and experimental results demonstrate that it provides better speech quality compared with the state-of-the-art classic MELPe codec at lower bit-rate.

* 6 pages 

  Access Paper or Ask Questions

AV Taris: Online Audio-Visual Speech Recognition

Dec 14, 2020
George Sterpu, Naomi Harte

In recent years, Automatic Speech Recognition (ASR) technology has approached human-level performance on conversational speech under relatively clean listening conditions. In more demanding situations involving distant microphones, overlapped speech, background noise, or natural dialogue structures, the ASR error rate is at least an order of magnitude higher. The visual modality of speech carries the potential to partially overcome these challenges and contribute to the sub-tasks of speaker diarisation, voice activity detection, and the recovery of the place of articulation, and can compensate for up to 15dB of noise on average. This article develops AV Taris, a fully differentiable neural network model capable of decoding audio-visual speech in real time. We achieve this by connecting two recently proposed models for audio-visual speech integration and online speech recognition, namely AV Align and Taris. We evaluate AV Taris under the same conditions as AV Align and Taris on one of the largest publicly available audio-visual speech datasets, LRS2. Our results show that AV Taris is superior to the audio-only variant of Taris, demonstrating the utility of the visual modality to speech recognition within the real time decoding framework defined by Taris. Compared to an equivalent Transformer-based AV Align model that takes advantage of full sentences without meeting the real-time requirement, we report an absolute degradation of approximately 3% with AV Taris. As opposed to the more popular alternative for online speech recognition, namely the RNN Transducer, Taris offers a greatly simplified fully differentiable training pipeline. As a consequence, AV Taris has the potential to popularise the adoption of Audio-Visual Speech Recognition (AVSR) technology and overcome the inherent limitations of the audio modality in less optimal listening conditions.

  Access Paper or Ask Questions

From Speaker Verification to Multispeaker Speech Synthesis, Deep Transfer with Feedback Constraint

May 15, 2020
Zexin Cai, Chuxiong Zhang, Ming Li

High-fidelity speech can be synthesized by end-to-end text-to-speech models in recent years. However, accessing and controlling speech attributes such as speaker identity, prosody, and emotion in a text-to-speech system remains a challenge. This paper presents a system involving feedback constraint for multispeaker speech synthesis. We manage to enhance the knowledge transfer from the speaker verification to the speech synthesis by engaging the speaker verification network. The constraint is taken by an added loss related to the speaker identity, which is centralized to improve the speaker similarity between the synthesized speech and its natural reference audio. The model is trained and evaluated on publicly available datasets. Experimental results, including visualization on speaker embedding space, show significant improvement in terms of speaker identity cloning in the spectrogram level. Synthesized samples are available online for listening. (

* Submitted to INTERSPEECH 2020 

  Access Paper or Ask Questions