Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"speech": models, code, and papers

The NTNU System at the Interspeech 2020 Non-Native Children's Speech ASR Challenge

Jun 02, 2020
Tien-Hong Lo, Fu-An Chao, Shi-Yan Weng, Berlin Chen

This paper describes the NTNU ASR system participating in the Interspeech 2020 Non-Native Children's Speech ASR Challenge supported by the SIG-CHILD group of ISCA. This ASR shared task is made much more challenging due to the coexisting diversity of non-native and children speaking characteristics. In the setting of closed-track evaluation, all participants were restricted to develop their systems merely based on the speech and text corpora provided by the organizer. To work around this under-resourced issue, we built our ASR system on top of CNN-TDNNF-based acoustic models, meanwhile harnessing the synergistic power of various data augmentation strategies, including both utterance- and word-level speed perturbation and spectrogram augmentation, alongside a simple yet effective data-cleansing approach. All variants of our ASR system employed an RNN-based language model to rescore the first-pass recognition hypotheses, which was trained solely on the text dataset released by the organizer. Our system with the best configuration came out in second place, resulting in a word error rate (WER) of 17.59 %, while those of the top-performing, second runner-up and official baseline systems are 15.67%, 18.71%, 35.09%, respectively.

* Submitted to Interspeech 2020 Special Session: Shared Task on Automatic Speech Recognition for Non-Native Children's Speech 

  Access Paper or Ask Questions

An Early Study on Intelligent Analysis of Speech under COVID-19: Severity, Sleep Quality, Fatigue, and Anxiety

May 14, 2020
Jing Han, Kun Qian, Meishu Song, Zijiang Yang, Zhao Ren, Shuo Liu, Juan Liu, Huaiyuan Zheng, Wei Ji, Tomoya Koike, Xiao Li, Zixing Zhang, Yoshiharu Yamamoto, Björn W. Schuller

The COVID-19 outbreak was announced as a global pandemic by the World Health Organisation in March 2020 and has affected a growing number of people in the past few weeks. In this context, advanced artificial intelligence techniques are brought to the fore in responding to fight against and reduce the impact of this global health crisis. In this study, we focus on developing some potential use-cases of intelligent speech analysis for COVID-19 diagnosed patients. In particular, by analysing speech recordings from these patients, we construct audio-only-based models to automatically categorise the health state of patients from four aspects, including the severity of illness, sleep quality, fatigue, and anxiety. For this purpose, two established acoustic feature sets and support vector machines are utilised. Our experiments show that an average accuracy of .69 obtained estimating the severity of illness, which is derived from the number of days in hospitalisation. We hope that this study can foster an extremely fast, low-cost, and convenient way to automatically detect the COVID-19 disease.

  Access Paper or Ask Questions

Novel Word Embedding and Translation-based Language Modeling for Extractive Speech Summarization

Jul 22, 2016
Kuan-Yu Chen, Shih-Hung Liu, Berlin Chen, Hsin-Min Wang, Hsin-Hsi Chen

Word embedding methods revolve around learning continuous distributed vector representations of words with neural networks, which can capture semantic and/or syntactic cues, and in turn be used to induce similarity measures among words, sentences and documents in context. Celebrated methods can be categorized as prediction-based and count-based methods according to the training objectives and model architectures. Their pros and cons have been extensively analyzed and evaluated in recent studies, but there is relatively less work continuing the line of research to develop an enhanced learning method that brings together the advantages of the two model families. In addition, the interpretation of the learned word representations still remains somewhat opaque. Motivated by the observations and considering the pressing need, this paper presents a novel method for learning the word representations, which not only inherits the advantages of classic word embedding methods but also offers a clearer and more rigorous interpretation of the learned word representations. Built upon the proposed word embedding method, we further formulate a translation-based language modeling framework for the extractive speech summarization task. A series of empirical evaluations demonstrate the effectiveness of the proposed word representation learning and language modeling techniques in extractive speech summarization.

  Access Paper or Ask Questions

Multi-Discriminator Sobolev Defense-GAN Against Adversarial Attacks for End-to-End Speech Systems

Mar 15, 2021
Mohammad Esmaeilpour, Patrick Cardinal, Alessandro Lameiras Koerich

This paper introduces a defense approach against end-to-end adversarial attacks developed for cutting-edge speech-to-text systems. The proposed defense algorithm has four major steps. First, we represent speech signals with 2D spectrograms using the short-time Fourier transform. Second, we iteratively find a safe vector using a spectrogram subspace projection operation. This operation minimizes the chordal distance adjustment between spectrograms with an additional regularization term. Third, we synthesize a spectrogram with such a safe vector using a novel GAN architecture trained with Sobolev integral probability metric. To improve the model's performance in terms of stability and the total number of learned modes, we impose an additional constraint on the generator network. Finally, we reconstruct the signal from the synthesized spectrogram and the Griffin-Lim phase approximation technique. We evaluate the proposed defense approach against six strong white and black-box adversarial attacks benchmarked on DeepSpeech, Kaldi, and Lingvo models. Our experimental results show that our algorithm outperforms other state-of-the-art defense algorithms both in terms of accuracy and signal quality.

* 10 pages 

  Access Paper or Ask Questions

Frequency Gating: Improved Convolutional Neural Networks for Speech Enhancement in the Time-Frequency Domain

Nov 08, 2020
Koen Oostermeijer, Qing Wang, Jun Du

One of the strengths of traditional convolutional neural networks (CNNs) is their inherent translational invariance. However, for the task of speech enhancement in the time-frequency domain, this property cannot be fully exploited due to a lack of invariance in the frequency direction. In this paper we propose to remedy this inefficiency by introducing a method, which we call Frequency Gating, to compute multiplicative weights for the kernels of the CNN in order to make them frequency dependent. Several mechanisms are explored: temporal gating, in which weights are dependent on prior time frames, local gating, whose weights are generated based on a single time frame and the ones adjacent to it, and frequency-wise gating, where each kernel is assigned a weight independent of the input data. Experiments with an autoencoder neural network with skip connections show that both local and frequency-wise gating outperform the baseline and are therefore viable ways to improve CNN-based speech enhancement neural networks. In addition, a loss function based on the extended short-time objective intelligibility score (ESTOI) is introduced, which we show to outperform the standard mean squared error (MSE) loss function.

  Access Paper or Ask Questions

Speech Emotion Recognition with Global-Aware Fusion on Multi-scale Feature Representation

Apr 12, 2022
Wenjing Zhu, Xiang Li

Speech Emotion Recognition (SER) is a fundamental task to predict the emotion label from speech data. Recent works mostly focus on using convolutional neural networks~(CNNs) to learn local attention map on fixed-scale feature representation by viewing time-varied spectral features as images. However, rich emotional feature at different scales and important global information are not able to be well captured due to the limits of existing CNNs for SER. In this paper, we propose a novel GLobal-Aware Multi-scale (GLAM) neural network (The code is available at to learn multi-scale feature representation with global-aware fusion module to attend emotional information. Specifically, GLAM iteratively utilizes multiple convolutional kernels with different scales to learn multiple feature representation. Then, instead of using attention-based methods, a simple but effective global-aware fusion module is applied to grab most important emotional information globally. Experiments on the benchmark corpus IEMOCAP over four emotions demonstrates the superiority of our proposed model with 2.5% to 4.5% improvements on four common metrics compared to previous state-of-the-art approaches.

* 6 pages, 3 figures, ICASSP 2022 

  Access Paper or Ask Questions

Fairness in Rating Prediction by Awareness of Verbal and Gesture Quality of Public Speeches

Dec 16, 2020
Rupam Acharyya, Ankani Chattoraj, Shouman Das, Md. Iftekhar Tanveer, Ehsan Hoque

The role of verbal and non-verbal cues towards great public speaking has been a topic of exploration for many decades. We identify a commonality across present theories, the element of "variety or heterogeneity" in channels or modes of communication (e.g. resorting to stories, scientific facts, emotional connections, facial expressions etc.) which is essential for effectively communicating information. We use this observation to formalize a novel HEterogeneity Metric, HEM, that quantifies the quality of a talk both in the verbal and non-verbal domain (transcript and facial gestures). We use TED talks as an input repository of public speeches because it consists of speakers from a diverse community besides having a wide outreach. We show that there is an interesting relationship between HEM and the ratings of TED talks given to speakers by viewers. It emphasizes that HEM inherently and successfully represents the quality of a talk based on "variety or heterogeneity". Further, we also discover that HEM successfully captures the prevalent bias in ratings with respect to race and gender, that we call sensitive attributes (because prediction based on these might result in unfair outcome). We incorporate the HEM metric into the loss function of a neural network with the goal to reduce unfairness in rating predictions with respect to race and gender. Our results show that the modified loss function improves fairness in prediction without considerably affecting prediction accuracy of the neural network. Our work ties together a novel metric for public speeches in both verbal and non-verbal domain with the computational power of a neural network to design a fair prediction system for speakers.

  Access Paper or Ask Questions

Deep Recurrent Convolutional Neural Network: Improving Performance For Speech Recognition

Dec 27, 2016
Zewang Zhang, Zheng Sun, Jiaqi Liu, Jingwen Chen, Zhao Huo, Xiao Zhang

A deep learning approach has been widely applied in sequence modeling problems. In terms of automatic speech recognition (ASR), its performance has significantly been improved by increasing large speech corpus and deeper neural network. Especially, recurrent neural network and deep convolutional neural network have been applied in ASR successfully. Given the arising problem of training speed, we build a novel deep recurrent convolutional network for acoustic modeling and then apply deep residual learning to it. Our experiments show that it has not only faster convergence speed but better recognition accuracy over traditional deep convolutional recurrent network. In the experiments, we compare the convergence speed of our novel deep recurrent convolutional networks and traditional deep convolutional recurrent networks. With faster convergence speed, our novel deep recurrent convolutional networks can reach the comparable performance. We further show that applying deep residual learning can boost the convergence speed of our novel deep recurret convolutional networks. Finally, we evaluate all our experimental networks by phoneme error rate (PER) with our proposed bidirectional statistical n-gram language model. Our evaluation results show that our newly proposed deep recurrent convolutional network applied with deep residual learning can reach the best PER of 17.33\% with the fastest convergence speed on TIMIT database. The outstanding performance of our novel deep recurrent convolutional neural network with deep residual learning indicates that it can be potentially adopted in other sequential problems.

* 11 pages, 13 figures 

  Access Paper or Ask Questions

UniSpeech-SAT: Universal Speech Representation Learning with Speaker Aware Pre-Training

Oct 12, 2021
Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu

Self-supervised learning (SSL) is a long-standing goal for speech processing, since it utilizes large-scale unlabeled data and avoids extensive human labeling. Recent years witness great successes in applying self-supervised learning in speech recognition, while limited exploration was attempted in applying SSL for modeling speaker characteristics. In this paper, we aim to improve the existing SSL framework for speaker representation learning. Two methods are introduced for enhancing the unsupervised speaker information extraction. First, we apply the multi-task learning to the current SSL framework, where we integrate the utterance-wise contrastive loss with the SSL objective function. Second, for better speaker discrimination, we propose an utterance mixing strategy for data augmentation, where additional overlapped utterances are created unsupervisely and incorporate during training. We integrate the proposed methods into the HuBERT framework. Experiment results on SUPERB benchmark show that the proposed system achieves state-of-the-art performance in universal representation learning, especially for speaker identification oriented tasks. An ablation study is performed verifying the efficacy of each proposed method. Finally, we scale up training dataset to 94 thousand hours public audio data and achieve further performance improvement in all SUPERB tasks.

* ICASSP 2022 Submission 

  Access Paper or Ask Questions