Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"speech": models, code, and papers

End-to-End Multi-speaker Speech Recognition with Transformer

Feb 13, 2020
Xuankai Chang, Wangyou Zhang, Yanmin Qian, Jonathan Le Roux, Shinji Watanabe

Recently, fully recurrent neural network (RNN) based end-to-end models have been proven to be effective for multi-speaker speech recognition in both the single-channel and multi-channel scenarios. In this work, we explore the use of Transformer models for these tasks by focusing on two aspects. First, we replace the RNN-based encoder-decoder in the speech recognition model with a Transformer architecture. Second, in order to use the Transformer in the masking network of the neural beamformer in the multi-channel case, we modify the self-attention component to be restricted to a segment rather than the whole sequence in order to reduce computation. Besides the model architecture improvements, we also incorporate an external dereverberation preprocessing, the weighted prediction error (WPE), enabling our model to handle reverberated signals. Experiments on the spatialized wsj1-2mix corpus show that the Transformer-based models achieve 40.9% and 25.6% relative WER reduction, down to 12.1% and 6.4% WER, under the anechoic condition in single-channel and multi-channel tasks, respectively, while in the reverberant case, our methods achieve 41.5% and 13.8% relative WER reduction, down to 16.5% and 15.2% WER.

* To appear in ICASSP 2020 

  Access Paper or Ask Questions

Improving speech recognition by revising gated recurrent units

Sep 29, 2017
Mirco Ravanelli, Philemon Brakel, Maurizio Omologo, Yoshua Bengio

Speech recognition is largely taking advantage of deep learning, showing that substantial benefits can be obtained by modern Recurrent Neural Networks (RNNs). The most popular RNNs are Long Short-Term Memory (LSTMs), which typically reach state-of-the-art performance in many tasks thanks to their ability to learn long-term dependencies and robustness to vanishing gradients. Nevertheless, LSTMs have a rather complex design with three multiplicative gates, that might impair their efficient implementation. An attempt to simplify LSTMs has recently led to Gated Recurrent Units (GRUs), which are based on just two multiplicative gates. This paper builds on these efforts by further revising GRUs and proposing a simplified architecture potentially more suitable for speech recognition. The contribution of this work is two-fold. First, we suggest to remove the reset gate in the GRU design, resulting in a more efficient single-gate architecture. Second, we propose to replace tanh with ReLU activations in the state update equations. Results show that, in our implementation, the revised architecture reduces the per-epoch training time with more than 30% and consistently improves recognition performance across different tasks, input features, and noisy conditions when compared to a standard GRU.

  Access Paper or Ask Questions

TEASEL: A Transformer-Based Speech-Prefixed Language Model

Sep 12, 2021
Mehdi Arjmand, Mohammad Javad Dousti, Hadi Moradi

Multimodal language analysis is a burgeoning field of NLP that aims to simultaneously model a speaker's words, acoustical annotations, and facial expressions. In this area, lexicon features usually outperform other modalities because they are pre-trained on large corpora via Transformer-based models. Despite their strong performance, training a new self-supervised learning (SSL) Transformer on any modality is not usually attainable due to insufficient data, which is the case in multimodal language learning. This work proposes a Transformer-Based Speech-Prefixed Language Model called TEASEL to approach the mentioned constraints without training a complete Transformer model. TEASEL model includes speech modality as a dynamic prefix besides the textual modality compared to a conventional language model. This method exploits a conventional pre-trained language model as a cross-modal Transformer model. We evaluated TEASEL for the multimodal sentiment analysis task defined by CMU-MOSI dataset. Extensive experiments show that our model outperforms unimodal baseline language models by 4% and outperforms the current multimodal state-of-the-art (SoTA) model by 1% in F1-score. Additionally, our proposed method is 72% smaller than the SoTA model.

  Access Paper or Ask Questions

Multi-scale Octave Convolutions for Robust Speech Recognition

Oct 31, 2019
Joanna Rownicka, Peter Bell, Steve Renals

We propose a multi-scale octave convolution layer to learn robust speech representations efficiently. Octave convolutions were introduced by Chen et al [1] in the computer vision field to reduce the spatial redundancy of the feature maps by decomposing the output of a convolutional layer into feature maps at two different spatial resolutions, one octave apart. This approach improved the efficiency as well as the accuracy of the CNN models. The accuracy gain was attributed to the enlargement of the receptive field in the original input space. We argue that octave convolutions likewise improve the robustness of learned representations due to the use of average pooling in the lower resolution group, acting as a low-pass filter. We test this hypothesis by evaluating on two noisy speech corpora - Aurora-4 and AMI. We extend the octave convolution concept to multiple resolution groups and multiple octaves. To evaluate the robustness of the inferred representations, we report the similarity between clean and noisy encodings using an affine projection loss as a proxy robustness measure. The results show that proposed method reduces the WER by up to 6.6% relative for Aurora-4 and 3.6% for AMI, while improving the computational efficiency of the CNN acoustic models.

* submitted to ICASSP2020 

  Access Paper or Ask Questions

[email protected]: Using BERT and Multilingual BERT models for Hate Speech Detection

Jan 22, 2021
Suman Dowlagar, Radhika Mamidi

Hateful and Toxic content has become a significant concern in today's world due to an exponential rise in social media. The increase in hate speech and harmful content motivated researchers to dedicate substantial efforts to the challenging direction of hateful content identification. In this task, we propose an approach to automatically classify hate speech and offensive content. We have used the datasets obtained from FIRE 2019 and 2020 shared tasks. We perform experiments by taking advantage of transfer learning models. We observed that the pre-trained BERT model and the multilingual-BERT model gave the best results. The code is made publically available at

  Access Paper or Ask Questions

Multi-head Monotonic Chunkwise Attention For Online Speech Recognition

May 01, 2020
Baiji Liu, Songjun Cao, Sining Sun, Weibin Zhang, Long Ma

The attention mechanism of the Listen, Attend and Spell (LAS) model requires the whole input sequence to calculate the attention context and thus is not suitable for online speech recognition. To deal with this problem, we propose multi-head monotonic chunk-wise attention (MTH-MoChA), an improved version of MoChA. MTH-MoChA splits the input sequence into small chunks and computes multi-head attentions over the chunks. We also explore useful training strategies such as LSTM pooling, minimum world error rate training and SpecAugment to further improve the performance of MTH-MoChA. Experiments on AISHELL-1 data show that the proposed model, along with the training strategies, improve the character error rate (CER) of MoChA from 8.96% to 7.68% on test set. On another 18000 hours in-car speech data set, MTH-MoChA obtains 7.28% CER, which is significantly better than a state-of-the-art hybrid system.

  Access Paper or Ask Questions

Word-Level Style Control for Expressive, Non-attentive Speech Synthesis

Nov 19, 2021
Konstantinos Klapsas, Nikolaos Ellinas, June Sig Sung, Hyoungmin Park, Spyros Raptis

This paper presents an expressive speech synthesis architecture for modeling and controlling the speaking style at a word level. It attempts to learn word-level stylistic and prosodic representations of the speech data, with the aid of two encoders. The first one models style by finding a combination of style tokens for each word given the acoustic features, and the second outputs a word-level sequence conditioned only on the phonetic information in order to disentangle it from the style information. The two encoder outputs are aligned and concatenated with the phoneme encoder outputs and then decoded with a Non-Attentive Tacotron model. An extra prior encoder is used to predict the style tokens autoregressively, in order for the model to be able to run without a reference utterance. We find that the resulting model gives both word-level and global control over the style, as well as prosody transfer capabilities.

* Proceedings of SPECOM 2021 

  Access Paper or Ask Questions

End-to-End ASR-free Keyword Search from Speech

Jan 13, 2017
Kartik Audhkhasi, Andrew Rosenberg, Abhinav Sethy, Bhuvana Ramabhadran, Brian Kingsbury

End-to-end (E2E) systems have achieved competitive results compared to conventional hybrid hidden Markov model (HMM)-deep neural network based automatic speech recognition (ASR) systems. Such E2E systems are attractive due to the lack of dependence on alignments between input acoustic and output grapheme or HMM state sequence during training. This paper explores the design of an ASR-free end-to-end system for text query-based keyword search (KWS) from speech trained with minimal supervision. Our E2E KWS system consists of three sub-systems. The first sub-system is a recurrent neural network (RNN)-based acoustic auto-encoder trained to reconstruct the audio through a finite-dimensional representation. The second sub-system is a character-level RNN language model using embeddings learned from a convolutional neural network. Since the acoustic and text query embeddings occupy different representation spaces, they are input to a third feed-forward neural network that predicts whether the query occurs in the acoustic utterance or not. This E2E ASR-free KWS system performs respectably despite lacking a conventional ASR system and trains much faster.

* Published in the IEEE 2017 International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2017), scheduled for 5-9 March 2017 in New Orleans, Louisiana, USA 

  Access Paper or Ask Questions

Effectiveness of self-supervised pre-training for speech recognition

Nov 10, 2019
Alexei Baevski, Michael Auli, Abdelrahman Mohamed

We present pre-training approaches for self-supervised representation learning of speech data. A BERT, masked language model, loss on discrete features is compared with an InfoNCE-based constrastive loss on continuous speech features. The pre-trained models are then fine-tuned with a Connectionist Temporal Classification (CTC) loss to predict target character sequences. To study impact of stacking multiple feature learning modules trained using different self-supervised loss functions, we test the discrete and continuous BERT pre-training approaches on spectral features and on learned acoustic representations, showing synergitic behaviour between acoustically motivated and masked language model loss functions. In low-resource conditions using only 10 hours of labeled data, we achieve Word Error Rates (WER) of 10.2\% and 23.5\% on the standard test "clean" and "other" benchmarks of the Librispeech dataset, which is almost on bar with previously published work that uses 10 times more labeled data. Moreover, compared to previous work that uses two models in tandem, by using one model for both BERT pre-trainining and fine-tuning, our model provides an average relative WER reduction of 9%.

  Access Paper or Ask Questions

LiRA: Learning Visual Speech Representations from Audio through Self-supervision

Jun 16, 2021
Pingchuan Ma, Rodrigo Mira, Stavros Petridis, Björn W. Schuller, Maja Pantic

The large amount of audiovisual content being shared online today has drawn substantial attention to the prospect of audiovisual self-supervised learning. Recent works have focused on each of these modalities separately, while others have attempted to model both simultaneously in a cross-modal fashion. However, comparatively little attention has been given to leveraging one modality as a training objective to learn from the other. In this work, we propose Learning visual speech Representations from Audio via self-supervision (LiRA). Specifically, we train a ResNet+Conformer model to predict acoustic features from unlabelled visual speech. We find that this pre-trained model can be leveraged towards word-level and sentence-level lip-reading through feature extraction and fine-tuning experiments. We show that our approach significantly outperforms other self-supervised methods on the Lip Reading in the Wild (LRW) dataset and achieves state-of-the-art performance on Lip Reading Sentences 2 (LRS2) using only a fraction of the total labelled data.

* Accepted for publication at Interspeech 2021 

  Access Paper or Ask Questions