The recent advances in the field of deep learning have not been fully utilised for decoding imagined speech primarily because of the unavailability of sufficient training samples to train a deep network. In this paper, we present a novel architecture that employs deep neural network (DNN) for classifying the words "in" and "cooperate" from the corresponding EEG signals in the ASU imagined speech dataset. Nine EEG channels, which best capture the underlying cortical activity, are chosen using common spatial pattern (CSP) and are treated as independent data vectors. Discrete wavelet transform (DWT) is used for feature extraction. To the best of our knowledge, so far DNN has not been employed as a classifier in decoding imagined speech. Treating the selected EEG channels corresponding to each imagined word as independent data vectors helps in providing sufficient number of samples to train a DNN. For each test trial, the final class label is obtained by applying a majority voting on the classification results of the individual channels considered in the trial. We have achieved accuracies comparable to the state-of-the-art results. The results can be further improved by using a higher-density EEG acquisition system in conjunction with other deep learning techniques such as long short-term memory.
Target speech extraction (TSE) extracts the speech of a target speaker in a mixture given auxiliary clues characterizing the speaker, such as an enrollment utterance. TSE addresses thus the challenging problem of simultaneously performing separation and speaker identification. There has been much progress in extraction performance following the recent development of neural networks for speech enhancement and separation. Most studies have focused on processing mixtures where the target speaker is actively speaking. However, the target speaker is sometimes silent in practice, i.e., inactive speaker (IS). A typical TSE system will tend to output a signal in IS cases, causing false alarms. This is a severe problem for the practical deployment of TSE systems. This paper aims at understanding better how well TSE systems can handle IS cases. We consider two approaches to deal with IS, (1) training a system to directly output zero signals or (2) detecting IS with an extra speaker verification module. We perform an extensive experimental comparison of these schemes in terms of extraction performance and IS detection using the LibriMix dataset and reveal their pros and cons.
Prosody modeling is important, but still challenging in expressive voice conversion. As prosody is difficult to model, and other factors, e.g., speaker, environment and content, which are entangled with prosody in speech, should be removed in prosody modeling. In this paper, we present IQDubbing to solve this problem for expressive voice conversion. To model prosody, we leverage the recent advances in discrete self-supervised speech representation (DSSR). Specifically, prosody vector is first extracted from pre-trained VQ-Wav2Vec model, where rich prosody information is embedded while most speaker and environment information are removed effectively by quantization. To further filter out the redundant information except prosody, such as content and partial speaker information, we propose two kinds of prosody filters to sample prosody from the prosody vector. Experiments show that IQDubbing is superior to baseline and comparison systems in terms of speech quality while maintaining prosody consistency and speaker similarity.
The performance of hate speech detection models relies on the datasets on which the models are trained. Existing datasets are mostly prepared with a limited number of instances or hate domains that define hate topics. This hinders large-scale analysis and transfer learning with respect to hate domains. In this study, we construct large-scale tweet datasets for hate speech detection in English and a low-resource language, Turkish, consisting of human-labeled 100k tweets per each. Our datasets are designed to have equal number of tweets distributed over five domains. The experimental results supported by statistical tests show that Transformer-based language models outperform conventional bag-of-words and neural models by at least 5% in English and 10% in Turkish for large-scale hate speech detection. The performance is also scalable to different training sizes, such that 98% of performance in English, and 97% in Turkish, are recovered when 20% of training instances are used. We further examine the generalization ability of cross-domain transfer among hate domains. We show that 96% of the performance of a target domain in average is recovered by other domains for English, and 92% for Turkish. Gender and religion are more successful to generalize to other domains, while sports fail most.
Recent works in speech recognition rely either on connectionist temporal classification (CTC) or sequence-to-sequence models for character-level recognition. CTC assumes conditional independence of individual characters, whereas attention-based models can provide nonsequential alignments. Therefore, we could use a CTC loss in combination with an attention-based model in order to force monotonic alignments and at the same time get rid of the conditional independence assumption. In this paper, we use the recently proposed hybrid CTC/attention architecture for audio-visual recognition of speech in-the-wild. To the best of our knowledge, this is the first time that such a hybrid architecture architecture is used for audio-visual recognition of speech. We use the LRS2 database and show that the proposed audio-visual model leads to an 1.3% absolute decrease in word error rate over the audio-only model and achieves the new state-of-the-art performance on LRS2 database (7% word error rate). We also observe that the audio-visual model significantly outperforms the audio-based model (up to 32.9% absolute improvement in word error rate) for several different types of noise as the signal-to-noise ratio decreases.
The recent progress in non-autoregressive text-to-speech (NAR-TTS) has made fast and high-quality speech synthesis possible. However, current NAR-TTS models usually use phoneme sequence as input and thus cannot understand the tree-structured syntactic information of the input sequence, which hurts the prosody modeling. To this end, we propose SyntaSpeech, a syntax-aware and light-weight NAR-TTS model, which integrates tree-structured syntactic information into the prosody modeling modules in PortaSpeech \cite{ren2021portaspeech}. Specifically, 1) We build a syntactic graph based on the dependency tree of the input sentence, then process the text encoding with a syntactic graph encoder to extract the syntactic information. 2) We incorporate the extracted syntactic encoding with PortaSpeech to improve the prosody prediction. 3) We introduce a multi-length discriminator to replace the flow-based post-net in PortaSpeech, which simplifies the training pipeline and improves the inference speed, while keeping the naturalness of the generated audio. Experiments on three datasets not only show that the tree-structured syntactic information grants SyntaSpeech the ability to synthesize better audio with expressive prosody, but also demonstrate the generalization ability of SyntaSpeech to adapt to multiple languages and multi-speaker text-to-speech. Ablation studies demonstrate the necessity of each component in SyntaSpeech. Source code and audio samples are available at https://syntaspeech.github.io
The COVID-19 pandemic has led to a dramatic increase in the use of face masks worldwide. Face coverings can affect both acoustic properties of the signal as well as speech patterns and have unintended effects if the person wearing the mask attempts to use speech processing technologies. In this paper we explore the impact of wearing face masks on the automated assessment of English language proficiency. We use a dataset from a large-scale speaking test for which test-takers were required to wear face masks during the test administration, and we compare it to a matched control sample of test-takers who took the same test before the mask requirements were put in place. We find that the two samples differ across a range of acoustic measures and also show a small but significant difference in speech patterns. However, these differences do not lead to differences in human or automated scores of English language proficiency. Several measures of bias showed no differences in scores between the two groups.
In real acoustic environment, speech enhancement is an arduous task to improve the quality and intelligibility of speech interfered by background noise and reverberation. Over the past years, deep learning has shown great potential on speech enhancement. In this paper, we propose a novel real-time framework called DBNet which is a dual-branch structure with alternate interconnection. Each branch incorporates an encoder-decoder architecture with skip connections. The two branches are responsible for spectrum and waveform modeling, respectively. A bridge layer is adopted to exchange information between the two branches. Systematic evaluation and comparison show that the proposed system substantially outperforms related algorithms under very challenging environments. And in INTERSPEECH 2021 Deep Noise Suppression (DNS) challenge, the proposed system ranks the top 8 in real-time track 1 in terms of the Mean Opinion Score (MOS) of the ITU-T P.835 framework.
We investigated the impact of noisy linguistic features on the performance of a Japanese speech synthesis system based on neural network that uses WaveNet vocoder. We compared an ideal system that uses manually corrected linguistic features including phoneme and prosodic information in training and test sets against a few other systems that use corrupted linguistic features. Both subjective and objective results demonstrate that corrupted linguistic features, especially those in the test set, affected the ideal system's performance significantly in a statistical sense due to a mismatched condition between the training and test sets. Interestingly, while an utterance-level Turing test showed that listeners had a difficult time differentiating synthetic speech from natural speech, it further indicated that adding noise to the linguistic features in the training set can partially reduce the effect of the mismatch, regularize the model, and help the system perform better when linguistic features of the test set are noisy.
In this work, we propose minimum Bayes risk (MBR) training of RNN-Transducer (RNN-T) for end-to-end speech recognition. Specifically, initialized with a RNN-T trained model, MBR training is conducted via minimizing the expected edit distance between the reference label sequence and on-the-fly generated N-best hypothesis. We also introduce a heuristic to incorporate an external neural network language model (NNLM) in RNN-T beam search decoding and explore MBR training with the external NNLM. Experimental results demonstrate an MBR trained model outperforms a RNN-T trained model substantially and further improvements can be achieved if trained with an external NNLM. Our best MBR trained system achieves absolute character error rate (CER) reductions of 1.2% and 0.5% on read and spontaneous Mandarin speech respectively over a strong convolution and transformer based RNN-T baseline trained on ~21,000 hours of speech.