This paper presents BSTC (Baidu Speech Translation Corpus), a large-scale Chinese-English speech translation dataset. This dataset is constructed based on a collection of licensed videos of talks or lectures, including about 68 hours of Mandarin data, their manual transcripts and translations into English, as well as automated transcripts by an automatic speech recognition (ASR) model. We have further asked three experienced interpreters to simultaneously interpret the testing talks in a mock conference setting. This corpus is expected to promote the research of automatic simultaneous translation as well as the development of practical systems. We have organized simultaneous translation tasks and used this corpus to evaluate automatic simultaneous translation systems.
Research on multilingual speech emotion recognition faces the problem that most available speech corpora differ from each other in important ways, such as annotation methods or interaction scenarios. These inconsistencies complicate building a multilingual system. We present results for cross-lingual and multilingual emotion recognition on English and French speech data with similar characteristics in terms of interaction (human-human conversations). Further, we explore the possibility of fine-tuning a pre-trained cross-lingual model with only a small number of samples from the target language, which is of great interest for low-resource languages. To gain more insights in what is learned by the deployed convolutional neural network, we perform an analysis on the attention mechanism inside the network.
In this paper, we introduce a collaborative and modern annotation tool for audio and speech: audino. The tool allows annotators to define and describe temporal segmentation in audios. These segments can be labelled and transcribed easily using a dynamically generated form. An admin can centrally control user roles and project assignment through the admin dashboard. The dashboard also enables describing labels and their values. The annotations can easily be exported in JSON format for further processing. The tool allows audio data to be uploaded and assigned to a user through a key-based API. The flexibility available in the annotation tool enables annotation for Speech Scoring, Voice Activity Detection (VAD), Speaker Diarisation, Speaker Identification, Speech Recognition, Emotion Recognition tasks and more. The MIT open source license allows it to be used for academic and commercial projects.
Transfer learning is a vital technique that generalizes models trained for one setting or task to other settings or tasks. For example in speech recognition, an acoustic model trained for one language can be used to recognize speech in another language, with little or no re-training data. Transfer learning is closely related to multi-task learning (cross-lingual vs. multilingual), and is traditionally studied in the name of `model adaptation'. Recent advance in deep learning shows that transfer learning becomes much easier and more effective with high-level abstract features learned by deep models, and the `transfer' can be conducted not only between data distributions and data types, but also between model structures (e.g., shallow nets and deep nets) or even model types (e.g., Bayesian models and neural models). This review paper summarizes some recent prominent research towards this direction, particularly for speech and language processing. We also report some results from our group and highlight the potential of this very interesting research field.
We introduce fairseq S2T, a fairseq extension for speech-to-text (S2T) modeling tasks such as end-to-end speech recognition and speech-to-text translation. It follows fairseq's careful design for scalability and extensibility. We provide end-to-end workflows from data pre-processing, model training to offline (online) inference. We implement state-of-the-art RNN-based as well as Transformer-based models and open-source detailed training recipes. Fairseq's machine translation models and language models can be seamlessly integrated into S2T workflows for multi-task learning or transfer learning. Fairseq S2T documentation and examples are available at https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text.
The recent emergence of machine-learning based generative models for speech suggests a significant reduction in bit rate for speech codecs is possible. However, the performance of generative models deteriorates significantly with the distortions present in real-world input signals. We argue that this deterioration is due to the sensitivity of the maximum likelihood criterion to outliers and the ineffectiveness of modeling a sum of independent signals with a single autoregressive model. We introduce predictive-variance regularization to reduce the sensitivity to outliers, resulting in a significant increase in performance. We show that noise reduction to remove unwanted signals can significantly increase performance. We provide extensive subjective performance evaluations that show that our system based on generative modeling provides state-of-the-art coding performance at 3 kb/s for real-world speech signals at reasonable computational complexity.
In this paper, we propose a novel architecture of wavelet network called Multi-input Multi-output Wavelet Network MIMOWN as a generalization of the old architecture of wavelet network. This newel prototype was applied to speech recognition application especially to model acoustic unit of speech. The originality of our work is the proposal of MIMOWN to model acoustic unit of speech. This approach was proposed to overcome limitation of old wavelet network model. The use of the multi-input multi-output architecture will allows training wavelet network on various examples of acoustic units.
In this paper, we improve speech translation (ST) through effectively leveraging large quantities of unlabeled speech and text data in different and complementary ways. We explore both pretraining and self-training by using the large Libri-Light speech audio corpus and language modeling with CommonCrawl. Our experiments improve over the previous state of the art by 2.6 BLEU on average on all four considered CoVoST 2 language pairs via a simple recipe of combining wav2vec 2.0 pretraining, a single iteration of self-training and decoding with a language model. Different to existing work, our approach does not leverage any other supervision than ST data. Code and models will be publicly released.
Hearing aids are expected to improve speech intelligibility for listeners with hearing impairment. An appropriate amplification fitting tuned for the listener's hearing disability is critical for good performance. The developments of most prescriptive fittings are based on data collected in subjective listening experiments, which are usually expensive and time-consuming. In this paper, we explore an alternative approach to finding the optimal fitting by introducing a hearing aid speech processing framework, in which the fitting is optimised in an automated way using an intelligibility objective function based on the HASPI physiological auditory model. The framework is fully differentiable, thus can employ the back-propagation algorithm for efficient, data-driven optimisation. Our initial objective experiments show promising results for noise-free speech amplification, where the automatically optimised processors outperform one of the well recognised hearing aid prescriptions.