Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"speech": models, code, and papers

Applying Phonological Features in Multilingual Text-To-Speech

Oct 10, 2021
Cong Zhang, Huinan Zeng, Huang Liu, Jiewen Zheng

This study investigates whether phonological features can be applied in text-to-speech systems to generate native and non-native speech in English and Mandarin. We present a mapping of ARPABET/pinyin to SAMPA/SAMPA-SC and then to phonological features. We tested whether this mapping could lead to the successful generation of native, non-native, and code-switched speech in the two languages. We ran two experiments, one with a small dataset and one with a larger dataset. The results proved that phonological features could be used as a feasible input system, although further investigation is needed to improve model performance. The accented output generated by the TTS models also helps with understanding human second language acquisition processes.

* demo webpage: 

  Access Paper or Ask Questions

Detecting Hate Speech with GPT-3

Mar 23, 2021
Ke-Li Chiu, Rohan Alexander

Sophisticated language models such as OpenAI's GPT-3 can generate hateful text that targets marginalized groups. Given this capacity, we are interested in whether large language models can be used to identify hate speech and classify text as sexist or racist? We use GPT-3 to identify sexist and racist text passages with zero-, one-, and few-shot learning. We find that with zero- and one-shot learning, GPT-3 is able to identify sexist or racist text with an accuracy between 48 per cent and 69 per cent. With few-shot learning and an instruction included in the prompt, the model's accuracy can be as high as 78 per cent. We conclude that large language models have a role to play in hate speech detection, and that with further development language models could be used to counter hate speech and even self-police.

* 15 pages, 1 figure, 8 tables 

  Access Paper or Ask Questions

Curriculum optimization for low-resource speech recognition

Feb 17, 2022
Anastasia Kuznetsova, Anurag Kumar, Jennifer Drexler Fox, Francis Tyers

Modern end-to-end speech recognition models show astonishing results in transcribing audio signals into written text. However, conventional data feeding pipelines may be sub-optimal for low-resource speech recognition, which still remains a challenging task. We propose an automated curriculum learning approach to optimize the sequence of training examples based on both the progress of the model while training and prior knowledge about the difficulty of the training examples. We introduce a new difficulty measure called compression ratio that can be used as a scoring function for raw audio in various noise conditions. The proposed method improves speech recognition Word Error Rate performance by up to 33% relative over the baseline system

  Access Paper or Ask Questions

Feasibility of Post-Editing Speech Transcriptions with a Mismatched Crowd

Sep 07, 2016
Purushotam Radadia, Shirish Karande

Manual correction of speech transcription can involve a selection from plausible transcriptions. Recent work has shown the feasibility of employing a mismatched crowd for speech transcription. However, it is yet to be established whether a mismatched worker has sufficiently fine-granular speech perception to choose among the phonetically proximate options that are likely to be generated from the trellis of an ASRU. Hence, we consider five languages, Arabic, German, Hindi, Russian and Spanish. For each we generate synthetic, phonetically proximate, options which emulate post-editing scenarios of varying difficulty. We consistently observe non-trivial crowd ability to choose among fine-granular options.

* HCOMP 2016 Works-in-Progress 

  Access Paper or Ask Questions

Speaker-aware speech-transformer

Jan 02, 2020
Zhiyun Fan, Jie Li, Shiyu Zhou, Bo Xu

Recently, end-to-end (E2E) models become a competitive alternative to the conventional hybrid automatic speech recognition (ASR) systems. However, they still suffer from speaker mismatch in training and testing condition. In this paper, we use Speech-Transformer (ST) as the study platform to investigate speaker aware training of E2E models. We propose a model called Speaker-Aware Speech-Transformer (SAST), which is a standard ST equipped with a speaker attention module (SAM). The SAM has a static speaker knowledge block (SKB) that is made of i-vectors. At each time step, the encoder output attends to the i-vectors in the block, and generates a weighted combined speaker embedding vector, which helps the model to normalize the speaker variations. The SAST model trained in this way becomes independent of specific training speakers and thus generalizes better to unseen testing speakers. We investigate different factors of SAM. Experimental results on the AISHELL-1 task show that SAST achieves a relative 6.5% CER reduction (CERR) over the speaker-independent (SI) baseline. Moreover, we demonstrate that SAST still works quite well even if the i-vectors in SKB all come from a different data source other than the acoustic training set.

  Access Paper or Ask Questions

Multilingual End-to-End Speech Translation

Oct 31, 2019
Hirofumi Inaguma, Kevin Duh, Tatsuya Kawahara, Shinji Watanabe

In this paper, we propose a simple yet effective framework for multilingual end-to-end speech translation (ST), in which speech utterances in source languages are directly translated to the desired target languages with a universal sequence-to-sequence architecture. While multilingual models have shown to be useful for automatic speech recognition (ASR) and machine translation (MT), this is the first time they are applied to the end-to-end ST problem. We show the effectiveness of multilingual end-to-end ST in two scenarios: one-to-many and many-to-many translations with publicly available data. We experimentally confirm that multilingual end-to-end ST models significantly outperform bilingual ones in both scenarios. The generalization of multilingual training is also evaluated in a transfer learning scenario to a very low-resource language pair. All of our codes and the database are publicly available to encourage further research in this emergent multilingual ST topic.

* Accepted to ASRU 2019 

  Access Paper or Ask Questions

Speech Recognition by Simply Fine-tuning BERT

Jan 30, 2021
Wen-Chin Huang, Chia-Hua Wu, Shang-Bao Luo, Kuan-Yu Chen, Hsin-Min Wang, Tomoki Toda

We propose a simple method for automatic speech recognition (ASR) by fine-tuning BERT, which is a language model (LM) trained on large-scale unlabeled text data and can generate rich contextual representations. Our assumption is that given a history context sequence, a powerful LM can narrow the range of possible choices and the speech signal can be used as a simple clue. Hence, comparing to conventional ASR systems that train a powerful acoustic model (AM) from scratch, we believe that speech recognition is possible by simply fine-tuning a BERT model. As an initial study, we demonstrate the effectiveness of the proposed idea on the AISHELL dataset and show that stacking a very simple AM on top of BERT can yield reasonable performance.

* Accepted to ICASSP 2021 

  Access Paper or Ask Questions

A Survey of Code-switched Speech and Language Processing

Apr 02, 2019
Sunayana Sitaram, Khyathi Raghavi Chandu, Sai Krishna Rallabandi, Alan W Black

Code-switching, the alternation of languages within a conversation or utterance, is a common communicative phenomenon that occurs in multilingual communities across the world. This survey reviews computational approaches for code-switched Speech and Natural Language Processing. We motivate why processing code-switched text and speech is essential for building intelligent agents and systems that interact with users in multilingual communities. As code-switching data and resources are scarce, we list what is available in various code-switched language pairs with the language processing tasks they can be used for. We review code-switching research in various Speech and NLP applications, including language processing tools and end-to-end systems. We conclude with future directions and open problems in the field.

  Access Paper or Ask Questions

Untangling in Invariant Speech Recognition

Mar 03, 2020
Cory Stephenson, Jenelle Feather, Suchismita Padhy, Oguz Elibol, Hanlin Tang, Josh McDermott, SueYeon Chung

Encouraged by the success of deep neural networks on a variety of visual tasks, much theoretical and experimental work has been aimed at understanding and interpreting how vision networks operate. Meanwhile, deep neural networks have also achieved impressive performance in audio processing applications, both as sub-components of larger systems and as complete end-to-end systems by themselves. Despite their empirical successes, comparatively little is understood about how these audio models accomplish these tasks. In this work, we employ a recently developed statistical mechanical theory that connects geometric properties of network representations and the separability of classes to probe how information is untangled within neural networks trained to recognize speech. We observe that speaker-specific nuisance variations are discarded by the network's hierarchy, whereas task-relevant properties such as words and phonemes are untangled in later layers. Higher level concepts such as parts-of-speech and context dependence also emerge in the later layers of the network. Finally, we find that the deep representations carry out significant temporal untangling by efficiently extracting task-relevant features at each time step of the computation. Taken together, these findings shed light on how deep auditory models process time dependent input signals to achieve invariant speech recognition, and show how different concepts emerge through the layers of the network.

* Advances in Neural Information Processing Systems. 2019 

  Access Paper or Ask Questions