Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"speech": models, code, and papers

Joint Audio-Text Model for Expressive Speech-Driven 3D Facial Animation

Dec 07, 2021
Yingruo Fan, Zhaojiang Lin, Jun Saito, Wenping Wang, Taku Komura

Speech-driven 3D facial animation with accurate lip synchronization has been widely studied. However, synthesizing realistic motions for the entire face during speech has rarely been explored. In this work, we present a joint audio-text model to capture the contextual information for expressive speech-driven 3D facial animation. The existing datasets are collected to cover as many different phonemes as possible instead of sentences, thus limiting the capability of the audio-based model to learn more diverse contexts. To address this, we propose to leverage the contextual text embeddings extracted from the powerful pre-trained language model that has learned rich contextual representations from large-scale text data. Our hypothesis is that the text features can disambiguate the variations in upper face expressions, which are not strongly correlated with the audio. In contrast to prior approaches which learn phoneme-level features from the text, we investigate the high-level contextual text features for speech-driven 3D facial animation. We show that the combined acoustic and textual modalities can synthesize realistic facial expressions while maintaining audio-lip synchronization. We conduct the quantitative and qualitative evaluations as well as the perceptual user study. The results demonstrate the superior performance of our model against existing state-of-the-art approaches.

  Access Paper or Ask Questions

Transformer-based Online CTC/attention End-to-End Speech Recognition Architecture

Feb 11, 2020
Haoran Miao, Gaofeng Cheng, Changfeng Gao, Pengyuan Zhang, Yonghong Yan

Recently, Transformer has gained success in automatic speech recognition (ASR) field. However, it is challenging to deploy a Transformer-based end-to-end (E2E) model for online speech recognition. In this paper, we propose the Transformer-based online CTC/attention E2E ASR architecture, which contains the chunk self-attention encoder (chunk-SAE) and the monotonic truncated attention (MTA) based self-attention decoder (SAD). Firstly, the chunk-SAE splits the speech into isolated chunks. To reduce the computational cost and improve the performance, we propose the state reuse chunk-SAE. Sencondly, the MTA based SAD truncates the speech features monotonically and performs attention on the truncated features. To support the online recognition, we integrate the state reuse chunk-SAE and the MTA based SAD into online CTC/attention architecture. We evaluate the proposed online models on the HKUST Mandarin ASR benchmark and achieve a 23.66% character error rate (CER) with a 320 ms latency. Our online model yields as little as 0.19% absolute CER degradation compared with the offline baseline, and achieves significant improvement over our prior work on Long Short-Term Memory (LSTM) based online E2E models.

* Accepted by ICASSP 2020 

  Access Paper or Ask Questions

A study on speech enhancement using exponent-only floating point quantized neural network (EOFP-QNN)

Oct 30, 2018
Yi-Te Hsu, Yu-Chen Lin, Szu-Wei Fu, Yu Tsao, Tei-Wei Kuo

Numerous studies have investigated the effectiveness of neural network quantization on pattern classification tasks. The present study, for the first time, investigated the performance of speech enhancement (a regression task in speech processing) using a novel exponent-only floating-point quantized neural network (EOFP-QNN). The proposed EOFP-QNN consists of two stages: mantissa-quantization and exponent-quantization. In the mantissa-quantization stage, EOFP-QNN learns how to quantize the mantissa bits of the model parameters while preserving the regression accuracy using the least mantissa precision. In the exponent-quantization stage, the exponent part of the parameters is further quantized without causing any additional performance degradation. We evaluated the proposed EOFP quantization technique on two types of neural networks, namely, bidirectional long short-term memory (BLSTM) and fully convolutional neural network (FCN), on a speech enhancement task. Experimental results showed that the model sizes can be significantly reduced (the model sizes of the quantized BLSTM and FCN models were only 18.75% and 21.89%, respectively, compared to those of the original models) while maintaining satisfactory speech-enhancement performance.

  Access Paper or Ask Questions

Attention-based multi-task learning for speech-enhancement and speaker-identification in multi-speaker dialogue scenario

Jan 07, 2021
Chiang-Jen Peng, Yun-Ju Chan, Cheng Yu, Syu-Siang Wang, Yu Tsao, Tai-Shih Chi

Multi-task learning (MTL) and the attention technique have been proven to effectively extract robust acoustic features for various speech-related applications in noisy environments. In this study, we integrated MTL and the attention-weighting mechanism and propose an attention-based MTL (ATM0 approach to realize a multi-model learning structure and to promote the speech enhancement (SE) and speaker identification (SI) systems simultaneously. There are three subsystems in the proposed ATM: SE, SI, and attention-Net (AttNet). In the proposed system, a long-short-term memory (LSTM) is used to perform SE, while a deep neural network (DNN) model is applied to construct SI and AttNet in ATM. The overall ATM system first extracts the representative features and then enhances the speech spectra in LSTM-SE and classifies speaker identity in DNN-SI. We conducted our experiment on Taiwan Mandarin hearing in noise test database. The evaluation results indicate that the proposed ATM system not only increases the quality and intelligibility of noisy speech input but also improves the accuracy of the SI system when compared to the conventional MTL approaches.

  Access Paper or Ask Questions

Data Augmentation Methods for End-to-end Speech Recognition on Distant-Talk Scenarios

Jun 07, 2021
Emiru Tsunoo, Kentaro Shibata, Chaitanya Narisetty, Yosuke Kashiwagi, Shinji Watanabe

Although end-to-end automatic speech recognition (E2E ASR) has achieved great performance in tasks that have numerous paired data, it is still challenging to make E2E ASR robust against noisy and low-resource conditions. In this study, we investigated data augmentation methods for E2E ASR in distant-talk scenarios. E2E ASR models are trained on the series of CHiME challenge datasets, which are suitable tasks for studying robustness against noisy and spontaneous speech. We propose to use three augmentation methods and thier combinations: 1) data augmentation using text-to-speech (TTS) data, 2) cycle-consistent generative adversarial network (Cycle-GAN) augmentation trained to map two different audio characteristics, the one of clean speech and of noisy recordings, to match the testing condition, and 3) pseudo-label augmentation provided by the pretrained ASR module for smoothing label distributions. Experimental results using the CHiME-6/CHiME-4 datasets show that each augmentation method individually improves the accuracy on top of the conventional SpecAugment; further improvements are obtained by combining these approaches. We achieved 4.3\% word error rate (WER) reduction, which was more significant than that of the SpecAugment, when we combine all three augmentations for the CHiME-6 task.

* Accepted for Interspeech2021 

  Access Paper or Ask Questions

Analyzing the factors affecting usefulness of Self-Supervised Pre-trained Representations for Speech Recognition

Apr 04, 2022
Lodagala V S V Durga Prasad, Ashish Seth, Sreyan Ghosh, S. Umesh

Self-supervised learning (SSL) to learn high-level speech representations has been a popular approach to building Automatic Speech Recognition (ASR) systems in low-resource settings. However, the common assumption made in literature is that a considerable amount of unlabeled data is available for the same domain or language that can be leveraged for SSL pre-training, which we acknowledge is not feasible in a real-world setting. In this paper, as part of the Interspeech Gram Vaani ASR challenge, we try to study the effect of domain, language, dataset size, and other aspects of our upstream pre-training SSL data on the final performance low-resource downstream ASR task. We also build on the continued pre-training paradigm to study the effect of prior knowledge possessed by models trained using SSL. Extensive experiments and studies reveal that the performance of ASR systems is susceptible to the data used for SSL pre-training. Their performance improves with an increase in similarity and volume of pre-training data. We believe our work will be helpful to the speech community in building better ASR systems in low-resource settings and steer research towards improving generalization in SSL-based pre-training for speech systems.

* Submitted to Interspeech 2022 

  Access Paper or Ask Questions

ESE: Efficient Speech Recognition Engine with Sparse LSTM on FPGA

Feb 20, 2017
Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li, Dongliang Xie, Hong Luo, Song Yao, Yu Wang, Huazhong Yang, William J. Dally

Long Short-Term Memory (LSTM) is widely used in speech recognition. In order to achieve higher prediction accuracy, machine learning scientists have built larger and larger models. Such large model is both computation intensive and memory intensive. Deploying such bulky model results in high power consumption and leads to high total cost of ownership (TCO) of a data center. In order to speedup the prediction and make it energy efficient, we first propose a load-balance-aware pruning method that can compress the LSTM model size by 20x (10x from pruning and 2x from quantization) with negligible loss of the prediction accuracy. The pruned model is friendly for parallel processing. Next, we propose scheduler that encodes and partitions the compressed model to each PE for parallelism, and schedule the complicated LSTM data flow. Finally, we design the hardware architecture, named Efficient Speech Recognition Engine (ESE) that works directly on the compressed model. Implemented on Xilinx XCKU060 FPGA running at 200MHz, ESE has a performance of 282 GOPS working directly on the compressed LSTM network, corresponding to 2.52 TOPS on the uncompressed one, and processes a full LSTM for speech recognition with a power dissipation of 41 Watts. Evaluated on the LSTM for speech recognition benchmark, ESE is 43x and 3x faster than Core i7 5930k CPU and Pascal Titan X GPU implementations. It achieves 40x and 11.5x higher energy efficiency compared with the CPU and GPU respectively.

* Accepted as full paper in FPGA'17, Monterey, CA; Also appeared at 1st International Workshop on Efficient Methods for Deep Neural Networks at NIPS 2016, Barcelona, Spain 

  Access Paper or Ask Questions

Non-Autoregressive TTS with Explicit Duration Modelling for Low-Resource Highly Expressive Speech

Jun 25, 2021
Raahil Shah, Kamil Pokora, Abdelhamid Ezzerg, Viacheslav Klimkov, Goeric Huybrechts, Bartosz Putrycz, Daniel Korzekwa, Thomas Merritt

Whilst recent neural text-to-speech (TTS) approaches produce high-quality speech, they typically require a large amount of recordings from the target speaker. In previous work, a 3-step method was proposed to generate high-quality TTS while greatly reducing the amount of data required for training. However, we have observed a ceiling effect in the level of naturalness achievable for highly expressive voices when using this approach. In this paper, we present a method for building highly expressive TTS voices with as little as 15 minutes of speech data from the target speaker. Compared to the current state-of-the-art approach, our proposed improvements close the gap to recordings by 23.3% for naturalness of speech and by 16.3% for speaker similarity. Further, we match the naturalness and speaker similarity of a Tacotron2-based full-data (~10 hours) model using only 15 minutes of target speaker data, whereas with 30 minutes or more, we significantly outperform it. The following improvements are proposed: 1) changing from an autoregressive, attention-based TTS model to a non-autoregressive model replacing attention with an external duration model and 2) an additional Conditional Generative Adversarial Network (cGAN) based fine-tuning step.

* 6 pages, 5 figures. Accepted to Speech Synthesis Workshop (SSW) 2021 

  Access Paper or Ask Questions