Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"speech": models, code, and papers

Dynamic Prosody Generation for Speech Synthesis using Linguistics-Driven Acoustic Embedding Selection

Dec 02, 2019
Shubhi Tyagi, Marco Nicolis, Jonas Rohnke, Thomas Drugman, Jaime Lorenzo-Trueba

Recent advances in Text-to-Speech (TTS) have improved quality and naturalness to near-human capabilities when considering isolated sentences. But something which is still lacking in order to achieve human-like communication is the dynamic variations and adaptability of human speech. This work attempts to solve the problem of achieving a more dynamic and natural intonation in TTS systems, particularly for stylistic speech such as the newscaster speaking style. We propose a novel embedding selection approach which exploits linguistic information, leveraging the speech variability present in the training dataset. We analyze the contribution of both semantic and syntactic features. Our results show that the approach improves the prosody and naturalness for complex utterances as well as in Long Form Reading (LFR).

* Submitted for ICASSP 2020 

  Access Paper or Ask Questions

Star DGT: a Robust Gabor Transform for Speech Denoising

Apr 29, 2021
Vasiliki Kouni, Holger Rauhut

In this paper, we address the speech denoising problem, where white Gaussian additive noise is to be removed from a given speech signal. Our approach is based on a redundant, analysis-sparse representation of the original speech signal. We pick an eigenvector of the Zauner unitary matrix and -- under certain assumptions on the ambient dimension -- we use it as window vector to generate a spark deficient Gabor frame. The analysis operator associated with such a frame, is a (highly) redundant Gabor transform, which we use as a sparsifying transform in denoising procedure. We conduct computational experiments on real-world speech data, solving the analysis basis pursuit denoising problem, with four different choices of analysis operators, including our Gabor analysis operator. The results show that our proposed redundant Gabor transform outperforms -- in all cases -- Gabor transforms generated by state-of-the-art window vectors of time-frequency analysis.

* arXiv admin note: substantial text overlap with arXiv:2103.11233 

  Access Paper or Ask Questions

Scene-aware Far-field Automatic Speech Recognition

Apr 21, 2021
Zhenyu Tang, Dinesh Manocha

We propose a novel method for generating scene-aware training data for far-field automatic speech recognition. We use a deep learning-based estimator to non-intrusively compute the sub-band reverberation time of an environment from its speech samples. We model the acoustic characteristics of a scene with its reverberation time and represent it using a multivariate Gaussian distribution. We use this distribution to select acoustic impulse responses from a large real-world dataset for augmenting speech data. The speech recognition system trained on our scene-aware data consistently outperforms the system trained using many more random acoustic impulse responses on the REVERB and the AMI far-field benchmarks. In practice, we obtain 2.64% absolute improvement in word error rate compared with using training data of the same size with uniformly distributed reverberation times.

  Access Paper or Ask Questions

On Using Backpropagation for Speech Texture Generation and Voice Conversion

Mar 08, 2018
Jan Chorowski, Ron J. Weiss, Rif A. Saurous, Samy Bengio

Inspired by recent work on neural network image generation which rely on backpropagation towards the network inputs, we present a proof-of-concept system for speech texture synthesis and voice conversion based on two mechanisms: approximate inversion of the representation learned by a speech recognition neural network, and on matching statistics of neuron activations between different source and target utterances. Similar to image texture synthesis and neural style transfer, the system works by optimizing a cost function with respect to the input waveform samples. To this end we use a differentiable mel-filterbank feature extraction pipeline and train a convolutional CTC speech recognition network. Our system is able to extract speaker characteristics from very limited amounts of target speaker data, as little as a few seconds, and can be used to generate realistic speech babble or reconstruct an utterance in a different voice.

* Accepted to ICASSP 2018 

  Access Paper or Ask Questions

Speaker activity driven neural speech extraction

Feb 09, 2021
Marc Delcroix, Katerina Zmolikova, Tsubasa Ochiai, Keisuke Kinoshita, Tomohiro Nakatani

Target speech extraction, which extracts the speech of a target speaker in a mixture given auxiliary speaker clues, has recently received increased interest. Various clues have been investigated such as pre-recorded enrollment utterances, direction information, or video of the target speaker. In this paper, we explore the use of speaker activity information as an auxiliary clue for single-channel neural network-based speech extraction. We propose a speaker activity driven speech extraction neural network (ADEnet) and show that it can achieve performance levels competitive with enrollment-based approaches, without the need for pre-recordings. We further demonstrate the potential of the proposed approach for processing meeting-like recordings, where the speaker activity is obtained from a diarization system. We show that this simple yet practical approach can successfully extract speakers after diarization, which results in improved ASR performance, especially in high overlapping conditions, with a relative word error rate reduction of up to 25%.

* To appear in ICASSP 2021 

  Access Paper or Ask Questions

Wav2Pix: Speech-conditioned Face Generation using Generative Adversarial Networks

Mar 25, 2019
Amanda Duarte, Francisco Roldan, Miquel Tubau, Janna Escur, Santiago Pascual, Amaia Salvador, Eva Mohedano, Kevin McGuinness, Jordi Torres, Xavier Giro-i-Nieto

Speech is a rich biometric signal that contains information about the identity, gender and emotional state of the speaker. In this work, we explore its potential to generate face images of a speaker by conditioning a Generative Adversarial Network (GAN) with raw speech input. We propose a deep neural network that is trained from scratch in an end-to-end fashion, generating a face directly from the raw speech waveform without any additional identity information (e.g reference image or one-hot encoding). Our model is trained in a self-supervised approach by exploiting the audio and visual signals naturally aligned in videos. With the purpose of training from video data, we present a novel dataset collected for this work, with high-quality videos of youtubers with notable expressiveness in both the speech and visual signals.

* ICASSP 2019. Projevct website at 

  Access Paper or Ask Questions

Challenges and Opportunities of Speech Recognition for Bengali Language

Sep 27, 2021
M. F. Mridha, Abu Quwsar Ohi, Md. Abdul Hamid, Muhammad Mostafa Monowar

Speech recognition is a fascinating process that offers the opportunity to interact and command the machine in the field of human-computer interactions. Speech recognition is a language-dependent system constructed directly based on the linguistic and textual properties of any language. Automatic Speech Recognition (ASR) systems are currently being used to translate speech to text flawlessly. Although ASR systems are being strongly executed in international languages, ASR systems' implementation in the Bengali language has not reached an acceptable state. In this research work, we sedulously disclose the current status of the Bengali ASR system's research endeavors. In what follows, we acquaint the challenges that are mostly encountered while constructing a Bengali ASR system. We split the challenges into language-dependent and language-independent challenges and guide how the particular complications may be overhauled. Following a rigorous investigation and highlighting the challenges, we conclude that Bengali ASR systems require specific construction of ASR architectures based on the Bengali language's grammatical and phonetic structure.

* Accepted in Artificial Intelligence Review 

  Access Paper or Ask Questions

Out of the Echo Chamber: Detecting Countering Debate Speeches

May 03, 2020
Matan Orbach, Yonatan Bilu, Assaf Toledo, Dan Lahav, Michal Jacovi, Ranit Aharonov, Noam Slonim

An educated and informed consumption of media content has become a challenge in modern times. With the shift from traditional news outlets to social media and similar venues, a major concern is that readers are becoming encapsulated in "echo chambers" and may fall prey to fake news and disinformation, lacking easy access to dissenting views. We suggest a novel task aiming to alleviate some of these concerns -- that of detecting articles that most effectively counter the arguments -- and not just the stance -- made in a given text. We study this problem in the context of debate speeches. Given such a speech, we aim to identify, from among a set of speeches on the same topic and with an opposing stance, the ones that directly counter it. We provide a large dataset of 3,685 such speeches (in English), annotated for this relation, which hopefully would be of general interest to the NLP community. We explore several algorithms addressing this task, and while some are successful, all fall short of expert human performance, suggesting room for further research. All data collected during this work is freely available for research.

* Accepted to ACL 2020 as Long Paper. For the associated debate speeches corpus, see 

  Access Paper or Ask Questions

A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement

Aug 27, 2021
Tianrui Wang, Weibin Zhu

Deep learning technology has been widely applied to speech enhancement. While testing the effectiveness of various network structures, researchers are also exploring the improvement of the loss function used in network training. Although the existing methods have considered the auditory characteristics of speech or the reasonable expression of signal-to-noise ratio, the correlation with the auditory evaluation score and the applicability of the calculation for gradient optimization still need to be improved. In this paper, a signal-to-noise ratio loss function based on auditory power compression is proposed. The experimental results show that the overall correlation between the proposed function and the indexes of objective speech intelligibility, which is better than other loss functions. For the same speech enhancement model, the training effect of this method is also better than other comparison methods.

* 7 pages, 4 figures 

  Access Paper or Ask Questions