Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"speech recognition": models, code, and papers

Speech-Driven Text Retrieval: Using Target IR Collections for Statistical Language Model Adaptation in Speech Recognition

Jun 24, 2002
Atsushi Fujii, Katunobu Itou, Tetsuya Ishikawa

Speech recognition has of late become a practical technology for real world applications. Aiming at speech-driven text retrieval, which facilitates retrieving information with spoken queries, we propose a method to integrate speech recognition and retrieval methods. Since users speak contents related to a target collection, we adapt statistical language models used for speech recognition based on the target collection, so as to improve both the recognition and retrieval accuracy. Experiments using existing test collections combined with dictated queries showed the effectiveness of our method.

* Anni R. Coden and Eric W. Brown and Savitha Srinivasan (Eds.), Information Retrieval Techniques for Speech Applications (LNCS 2273), pp.94-104, Springer, 2002 
  

Integrating HMM-Based Speech Recognition With Direct Manipulation In A Multimodal Korean Natural Language Interface

Nov 18, 1996
Geunbae Lee, Jong-Hyeok Lee, Sangeok Kim

This paper presents a HMM-based speech recognition engine and its integration into direct manipulation interfaces for Korean document editor. Speech recognition can reduce typical tedious and repetitive actions which are inevitable in standard GUIs (graphic user interfaces). Our system consists of general speech recognition engine called ABrain {Auditory Brain} and speech commandable document editor called SHE {Simple Hearing Editor}. ABrain is a phoneme-based speech recognition engine which shows up to 97% of discrete command recognition rate. SHE is a EuroBridge widget-based document editor that supports speech commands as well as direct manipulation interfaces.

* 6 pages, ps file, presented at icmi96 (Bejing) 
  

Recent Progress in the CUHK Dysarthric Speech Recognition System

Jan 15, 2022
Shansong Liu, Mengzhe Geng, Shoukang Hu, Xurong Xie, Mingyu Cui, Jianwei Yu, Xunying Liu, Helen Meng

Despite the rapid progress of automatic speech recognition (ASR) technologies in the past few decades, recognition of disordered speech remains a highly challenging task to date. Disordered speech presents a wide spectrum of challenges to current data intensive deep neural networks (DNNs) based ASR technologies that predominantly target normal speech. This paper presents recent research efforts at the Chinese University of Hong Kong (CUHK) to improve the performance of disordered speech recognition systems on the largest publicly available UASpeech dysarthric speech corpus. A set of novel modelling techniques including neural architectural search, data augmentation using spectra-temporal perturbation, model based speaker adaptation and cross-domain generation of visual features within an audio-visual speech recognition (AVSR) system framework were employed to address the above challenges. The combination of these techniques produced the lowest published word error rate (WER) of 25.21% on the UASpeech test set 16 dysarthric speakers, and an overall WER reduction of 5.4% absolute (17.6% relative) over the CUHK 2018 dysarthric speech recognition system featuring a 6-way DNN system combination and cross adaptation of out-of-domain normal speech data trained systems. Bayesian model adaptation further allows rapid adaptation to individual dysarthric speakers to be performed using as little as 3.06 seconds of speech. The efficacy of these techniques were further demonstrated on a CUDYS Cantonese dysarthric speech recognition task.

  

Mandarin-English Code-switching Speech Recognition with Self-supervised Speech Representation Models

Oct 07, 2021
Liang-Hsuan Tseng, Yu-Kuan Fu, Heng-Jui Chang, Hung-yi Lee

Code-switching (CS) is common in daily conversations where more than one language is used within a sentence. The difficulties of CS speech recognition lie in alternating languages and the lack of transcribed data. Therefore, this paper uses the recently successful self-supervised learning (SSL) methods to leverage many unlabeled speech data without CS. We show that hidden representations of SSL models offer frame-level language identity even if the models are trained with English speech only. Jointly training CTC and language identification modules with self-supervised speech representations improves CS speech recognition performance. Furthermore, using multilingual speech data for pre-training obtains the best CS speech recognition.

* Submitted to ICASSP 2022 
  

Modelling word learning and recognition using visually grounded speech

Mar 14, 2022
Danny Merkx, Sebastiaan Scholten, Stefan L. Frank, Mirjam Ernestus, Odette Scharenborg

Background: Computational models of speech recognition often assume that the set of target words is already given. This implies that these models do not learn to recognise speech from scratch without prior knowledge and explicit supervision. Visually grounded speech models learn to recognise speech without prior knowledge by exploiting statistical dependencies between spoken and visual input. While it has previously been shown that visually grounded speech models learn to recognise the presence of words in the input, we explicitly investigate such a model as a model of human speech recognition. Methods: We investigate the time-course of word recognition as simulated by the model using a gating paradigm to test whether its recognition is affected by well-known word-competition effects in human speech processing. We furthermore investigate whether vector quantisation, a technique for discrete representation learning, aids the model in the discovery and recognition of words. Results/Conclusion: Our experiments show that the model is able to recognise nouns in isolation and even learns to properly differentiate between plural and singular nouns. We also find that recognition is influenced by word competition from the word-initial cohort and neighbourhood density, mirroring word competition effects in human speech comprehension. Lastly, we find no evidence that vector quantisation is helpful in discovering and recognising words. Our gating experiments even show that the vector quantised model requires more of the input sequence for correct recognition.

  

Understanding effect of speech perception in EEG based speech recognition systems

May 29, 2020
Gautam Krishna, Co Tran, Mason Carnahan, Ahmed Tewfik

The electroencephalography (EEG) signals recorded in parallel with speech are used to perform isolated and continuous speech recognition. During speaking process, one also hears his or her own speech and this speech perception is also reflected in the recorded EEG signals. In this paper we investigate whether it is possible to separate out this speech perception component from EEG signals in order to design more robust EEG based speech recognition systems. We further demonstrate predicting EEG signals recorded in parallel with speaking from EEG signals recorded in parallel with passive listening and vice versa with very low normalized root mean squared error (RMSE). We finally demonstrate both isolated and continuous speech recognition using EEG signals recorded in parallel with listening, speaking and improve the previous connectionist temporal classification (CTC) model results demonstrated by authors in [1] using their data set.

* Under Review 
  

Audio-visual multi-channel speech separation, dereverberation and recognition

Apr 08, 2022
Guinan Li, Jianwei Yu, Jiajun Deng, Xunying Liu, Helen Meng

Despite the rapid advance of automatic speech recognition (ASR) technologies, accurate recognition of cocktail party speech characterised by the interference from overlapping speakers, background noise and room reverberation remains a highly challenging task to date. Motivated by the invariance of visual modality to acoustic signal corruption, audio-visual speech enhancement techniques have been developed, although predominantly targeting overlapping speech separation and recognition tasks. In this paper, an audio-visual multi-channel speech separation, dereverberation and recognition approach featuring a full incorporation of visual information into all three stages of the system is proposed. The advantage of the additional visual modality over using audio only is demonstrated on two neural dereverberation approaches based on DNN-WPE and spectral mapping respectively. The learning cost function mismatch between the separation and dereverberation models and their integration with the back-end recognition system is minimised using fine-tuning on the MSE and LF-MMI criteria. Experiments conducted on the LRS2 dataset suggest that the proposed audio-visual multi-channel speech separation, dereverberation and recognition system outperforms the baseline audio-visual multi-channel speech separation and recognition system containing no dereverberation module by a statistically significant word error rate (WER) reduction of 2.06% absolute (8.77% relative).

* Accepted by ICASSP 2022 
  

TinySpeech: Attention Condensers for Deep Speech Recognition Neural Networks on Edge Devices

Aug 23, 2020
Alexander Wong, Mahmoud Famouri, Maya Pavlova, Siddharth Surana

Advances in deep learning have led to state-of-the-art performance across a multitude of speech recognition tasks. Nevertheless, the widespread deployment of deep neural networks for on-device speech recognition remains a challenge, particularly in edge scenarios where the memory and computing resources are highly constrained (e.g., low-power embedded devices) or where the memory and computing budget dedicated to speech recognition is low (e.g., mobile devices performing numerous tasks besides speech recognition). In this study, we introduce the concept of attention condensers for building low-footprint, highly-efficient deep neural networks for on-device speech recognition on the edge. More specifically, an attention condenser is a self-attention mechanism that learns and produces a condensed embedding characterizing joint local and cross-channel activation relationships, and performs selective attention accordingly. To illustrate its efficacy, we introduce TinySpeech, low-precision deep neural networks comprising largely of attention condensers tailored for on-device speech recognition using a machine-driven design exploration strategy. Experimental results on the Google Speech Commands benchmark dataset for limited-vocabulary speech recognition showed that TinySpeech networks achieved significantly lower architectural complexity (as much as $207\times$ fewer parameters) and lower computational complexity (as much as $21\times$ fewer multiply-add operations) when compared to previous deep neural networks in research literature. These results not only demonstrate the efficacy of attention condensers for building highly efficient deep neural networks for on-device speech recognition, but also illuminate its potential for accelerating deep learning on the edge and empowering a wide range of TinyML applications.

* 9 pages 
  
<<
1
2
3
4
5
6
7
8
9
10
>>