Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"speech recognition": models, code, and papers

Visual-Only Recognition of Normal, Whispered and Silent Speech

Feb 18, 2018
Stavros Petridis, Jie Shen, Doruk Cetin, Maja Pantic

Silent speech interfaces have been recently proposed as a way to enable communication when the acoustic signal is not available. This introduces the need to build visual speech recognition systems for silent and whispered speech. However, almost all the recently proposed systems have been trained on vocalised data only. This is in contrast with evidence in the literature which suggests that lip movements change depending on the speech mode. In this work, we introduce a new audiovisual database which is publicly available and contains normal, whispered and silent speech. To the best of our knowledge, this is the first study which investigates the differences between the three speech modes using the visual modality only. We show that an absolute decrease in classification rate of up to 3.7% is observed when training and testing on normal and whispered, respectively, and vice versa. An even higher decrease of up to 8.5% is reported when the models are tested on silent speech. This reveals that there are indeed visual differences between the 3 speech modes and the common assumption that vocalized training data can be used directly to train a silent speech recognition system may not be true.

* Accepted to ICASSP 2018 

Heterogeneous Reservoir Computing Models for Persian Speech Recognition

May 25, 2022
Zohreh Ansari, Farzin Pourhoseini, Fatemeh Hadaeghi

Over the last decade, deep-learning methods have been gradually incorporated into conventional automatic speech recognition (ASR) frameworks to create acoustic, pronunciation, and language models. Although it led to significant improvements in ASRs' recognition accuracy, due to their hard constraints related to hardware requirements (e.g., computing power and memory usage), it is unclear if such approaches are the most computationally- and energy-efficient options for embedded ASR applications. Reservoir computing (RC) models (e.g., echo state networks (ESNs) and liquid state machines (LSMs)), on the other hand, have been proven inexpensive to train, have vastly fewer parameters, and are compatible with emergent hardware technologies. However, their performance in speech processing tasks is relatively inferior to that of the deep-learning-based models. To enhance the accuracy of the RC in ASR applications, we propose heterogeneous single and multi-layer ESNs to create non-linear transformations of the inputs that capture temporal context at different scales. To test our models, we performed a speech recognition task on the Farsdat Persian dataset. Since, to the best of our knowledge, standard RC has not yet been employed to conduct any Persian ASR tasks, we also trained conventional single-layer and deep ESNs to provide baselines for comparison. Besides, we compared the RC performance with a standard long-short-term memory (LSTM) model. Heterogeneous RC models (1) show improved performance to the standard RC models; (2) perform on par in terms of recognition accuracy with the LSTM, and (3) reduce the training time considerably.

* This paper was accepted for oral presentation in IEEE WCCI 2022 + IJCNN 2022, special session on Reservoir Computing: algorithms, implementations and applications 

The Makerere Radio Speech Corpus: A Luganda Radio Corpus for Automatic Speech Recognition

Jun 20, 2022
Jonathan Mukiibi, Andrew Katumba, Joyce Nakatumba-Nabende, Ali Hussein, Josh Meyer

Building a usable radio monitoring automatic speech recognition (ASR) system is a challenging task for under-resourced languages and yet this is paramount in societies where radio is the main medium of public communication and discussions. Initial efforts by the United Nations in Uganda have proved how understanding the perceptions of rural people who are excluded from social media is important in national planning. However, these efforts are being challenged by the absence of transcribed speech datasets. In this paper, The Makerere Artificial Intelligence research lab releases a Luganda radio speech corpus of 155 hours. To our knowledge, this is the first publicly available radio dataset in sub-Saharan Africa. The paper describes the development of the voice corpus and presents baseline Luganda ASR performance results using Coqui STT toolkit, an open source speech recognition toolkit.

* Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 1945 to 1954 Marseille, 20 to 25 June 2022 

Internal Language Model Estimation based Language Model Fusion for Cross-Domain Code-Switching Speech Recognition

Jul 09, 2022
Yizhou Peng, Yufei Liu, Jicheng Zhang, Haihua Xu, Yi He, Hao Huang, Eng Siong Chng

Internal Language Model Estimation (ILME) based language model (LM) fusion has been shown significantly improved recognition results over conventional shallow fusion in both intra-domain and cross-domain speech recognition tasks. In this paper, we attempt to apply our ILME method to cross-domain code-switching speech recognition (CSSR) work. Specifically, our curiosity comes from several aspects. First, we are curious about how effective the ILME-based LM fusion is for both intra-domain and cross-domain CSSR tasks. We verify this with or without merging two code-switching domains. More importantly, we train an end-to-end (E2E) speech recognition model by means of merging two monolingual data sets and observe the efficacy of the proposed ILME-based LM fusion for CSSR. Experimental results on SEAME that is from Southeast Asian and another Chinese Mainland CS data set demonstrate the effectiveness of the proposed ILME-based LM fusion method.

* 5 pages. Submitted to INTERSPEECH 2022 

English Conversational Telephone Speech Recognition by Humans and Machines

Mar 06, 2017
George Saon, Gakuto Kurata, Tom Sercu, Kartik Audhkhasi, Samuel Thomas, Dimitrios Dimitriadis, Xiaodong Cui, Bhuvana Ramabhadran, Michael Picheny, Lynn-Li Lim, Bergul Roomi, Phil Hall

One of the most difficult speech recognition tasks is accurate recognition of human to human communication. Advances in deep learning over the last few years have produced major speech recognition improvements on the representative Switchboard conversational corpus. Word error rates that just a few years ago were 14% have dropped to 8.0%, then 6.6% and most recently 5.8%, and are now believed to be within striking range of human performance. This then raises two issues - what IS human performance, and how far down can we still drive speech recognition error rates? A recent paper by Microsoft suggests that we have already achieved human performance. In trying to verify this statement, we performed an independent set of human performance measurements on two conversational tasks and found that human performance may be considerably better than what was earlier reported, giving the community a significantly harder goal to achieve. We also report on our own efforts in this area, presenting a set of acoustic and language modeling techniques that lowered the word error rate of our own English conversational telephone LVCSR system to the level of 5.5%/10.3% on the Switchboard/CallHome subsets of the Hub5 2000 evaluation, which - at least at the writing of this paper - is a new performance milestone (albeit not at what we measure to be human performance!). On the acoustic side, we use a score fusion of three models: one LSTM with multiple feature inputs, a second LSTM trained with speaker-adversarial multi-task learning and a third residual net (ResNet) with 25 convolutional layers and time-dilated convolutions. On the language modeling side, we use word and character LSTMs and convolutional WaveNet-style language models.


Transformer Transducer: One Model Unifying Streaming and Non-streaming Speech Recognition

Oct 07, 2020
Anshuman Tripathi, Jaeyoung Kim, Qian Zhang, Han Lu, Hasim Sak

In this paper we present a Transformer-Transducer model architecture and a training technique to unify streaming and non-streaming speech recognition models into one model. The model is composed of a stack of transformer layers for audio encoding with no lookahead or right context and an additional stack of transformer layers on top trained with variable right context. In inference time, the context length for the variable context layers can be changed to trade off the latency and the accuracy of the model. We also show that we can run this model in a Y-model architecture with the top layers running in parallel in low latency and high latency modes. This allows us to have streaming speech recognition results with limited latency and delayed speech recognition results with large improvements in accuracy (20% relative improvement for voice-search task). We show that with limited right context (1-2 seconds of audio) and small additional latency (50-100 milliseconds) at the end of decoding, we can achieve similar accuracy with models using unlimited audio right context. We also present optimizations for audio and label encoders to speed up the inference in streaming and non-streaming speech decoding.


Modified Mel Filter Bank to Compute MFCC of Subsampled Speech

Oct 25, 2014
Kiran Kumar Bhuvanagiri, Sunil Kumar Kopparapu

Mel Frequency Cepstral Coefficients (MFCCs) are the most popularly used speech features in most speech and speaker recognition applications. In this work, we propose a modified Mel filter bank to extract MFCCs from subsampled speech. We also propose a stronger metric which effectively captures the correlation between MFCCs of original speech and MFCC of resampled speech. It is found that the proposed method of filter bank construction performs distinguishably well and gives recognition performance on resampled speech close to recognition accuracies on original speech.

* arXiv admin note: substantial text overlap with arXiv:1410.6903 

Learning to Count Words in Fluent Speech enables Online Speech Recognition

Jun 11, 2020
George Sterpu, Christian Saam, Naomi Harte

Sequence to Sequence models, in particular the Transformer, achieve state of the art results in Automatic Speech Recognition. Practical usage is however limited to cases where full utterance latency is acceptable. In this work we introduce Taris, a Transformer-based online speech recognition system aided by an auxiliary task of incremental word counting. We use the cumulative word sum to dynamically segment speech and enable its eager decoding into words. Experiments performed on the LRS2 and LibriSpeech datasets, of unconstrained and read speech respectively, show that the online system performs on a par with the offline one, while having a dynamic algorithmic delay of 5 segments. Furthermore, we show that the estimated segment length distribution resembles the word length distribution obtained with forced alignment, although our system does not require an exact segment-to-word equivalence. Taris introduces a negligible overhead compared to a standard Transformer, while the local relationship modelling between inputs and outputs grants invariance to sequence length by design.


Unsupervised Automatic Speech Recognition: A Review

Jun 09, 2021
Hanan Aldarmaki, Asad Ullah, Nazar Zaki

Automatic Speech Recognition (ASR) systems can be trained to achieve remarkable performance given large amounts of manually transcribed speech, but large labeled data sets can be difficult or expensive to acquire for all languages of interest. In this paper, we review the research literature to identify models and ideas that could lead to fully unsupervised ASR, including unsupervised segmentation of the speech signal, unsupervised mapping from speech segments to text, and semi-supervised models with nominal amounts of labeled examples. The objective of the study is to identify the limitations of what can be learned from speech data alone and to understand the minimum requirements for speech recognition. Identifying these limitations would help optimize the resources and efforts in ASR development for low-resource languages.


Transformer-based Online CTC/attention End-to-End Speech Recognition Architecture

Feb 11, 2020
Haoran Miao, Gaofeng Cheng, Changfeng Gao, Pengyuan Zhang, Yonghong Yan

Recently, Transformer has gained success in automatic speech recognition (ASR) field. However, it is challenging to deploy a Transformer-based end-to-end (E2E) model for online speech recognition. In this paper, we propose the Transformer-based online CTC/attention E2E ASR architecture, which contains the chunk self-attention encoder (chunk-SAE) and the monotonic truncated attention (MTA) based self-attention decoder (SAD). Firstly, the chunk-SAE splits the speech into isolated chunks. To reduce the computational cost and improve the performance, we propose the state reuse chunk-SAE. Sencondly, the MTA based SAD truncates the speech features monotonically and performs attention on the truncated features. To support the online recognition, we integrate the state reuse chunk-SAE and the MTA based SAD into online CTC/attention architecture. We evaluate the proposed online models on the HKUST Mandarin ASR benchmark and achieve a 23.66% character error rate (CER) with a 320 ms latency. Our online model yields as little as 0.19% absolute CER degradation compared with the offline baseline, and achieves significant improvement over our prior work on Long Short-Term Memory (LSTM) based online E2E models.

* Accepted by ICASSP 2020