Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"speech recognition": models, code, and papers

Spectral Modification Based Data Augmentation For Improving End-to-End ASR For Children's Speech

Mar 13, 2022
Vishwanath Pratap Singh, Hardik Sailor, Supratik Bhattacharya, Abhishek Pandey

Training a robust Automatic Speech Recognition (ASR) system for children's speech recognition is a challenging task due to inherent differences in acoustic attributes of adult and child speech and scarcity of publicly available children's speech dataset. In this paper, a novel segmental spectrum warping and perturbations in formant energy are introduced, to generate a children-like speech spectrum from that of an adult's speech spectrum. Then, this modified adult spectrum is used as augmented data to improve end-to-end ASR systems for children's speech recognition. The proposed data augmentation methods give 6.5% and 6.1% relative reduction in WER on children dev and test sets respectively, compared to the vocal tract length perturbation (VTLP) baseline system trained on Librispeech 100 hours adult speech dataset. When children's speech data is added in training with Librispeech set, it gives a 3.7 % and 5.1% relative reduction in WER, compared to the VTLP baseline system.

Access Paper or Ask Questions

Bidirectional Quaternion Long-Short Term Memory Recurrent Neural Networks for Speech Recognition

Nov 06, 2018
Titouan Parcollet, Mohamed Morchid, Georges Linarès, Renato De Mori

Recurrent neural networks (RNN) are at the core of modern automatic speech recognition (ASR) systems. In particular, long-short term memory (LSTM) recurrent neural networks have achieved state-of-the-art results in many speech recognition tasks, due to their efficient representation of long and short term dependencies in sequences of inter-dependent features. Nonetheless, internal dependencies within the element composing multidimensional features are weakly considered by traditional real-valued representations. We propose a novel quaternion long-short term memory (QLSTM) recurrent neural network that takes into account both the external relations between the features composing a sequence, and these internal latent structural dependencies with the quaternion algebra. QLSTMs are compared to LSTMs during a memory copy-task and a realistic application of speech recognition on the Wall Street Journal (WSJ) dataset. QLSTM reaches better performances during the two experiments with up to $2.8$ times less learning parameters, leading to a more expressive representation of the information.

* Submitted at ICASSP 2019. arXiv admin note: text overlap with arXiv:1806.04418 
Access Paper or Ask Questions

First-Pass Large Vocabulary Continuous Speech Recognition using Bi-Directional Recurrent DNNs

Dec 08, 2014
Awni Y. Hannun, Andrew L. Maas, Daniel Jurafsky, Andrew Y. Ng

We present a method to perform first-pass large vocabulary continuous speech recognition using only a neural network and language model. Deep neural network acoustic models are now commonplace in HMM-based speech recognition systems, but building such systems is a complex, domain-specific task. Recent work demonstrated the feasibility of discarding the HMM sequence modeling framework by directly predicting transcript text from audio. This paper extends this approach in two ways. First, we demonstrate that a straightforward recurrent neural network architecture can achieve a high level of accuracy. Second, we propose and evaluate a modified prefix-search decoding algorithm. This approach to decoding enables first-pass speech recognition with a language model, completely unaided by the cumbersome infrastructure of HMM-based systems. Experiments on the Wall Street Journal corpus demonstrate fairly competitive word error rates, and the importance of bi-directional network recurrence.

Access Paper or Ask Questions

Robust Federated Learning Against Adversarial Attacks for Speech Emotion Recognition

Mar 09, 2022
Yi Chang, Sofiane Laridi, Zhao Ren, Gregory Palmer, Björn W. Schuller, Marco Fisichella

Due to the development of machine learning and speech processing, speech emotion recognition has been a popular research topic in recent years. However, the speech data cannot be protected when it is uploaded and processed on servers in the internet-of-things applications of speech emotion recognition. Furthermore, deep neural networks have proven to be vulnerable to human-indistinguishable adversarial perturbations. The adversarial attacks generated from the perturbations may result in deep neural networks wrongly predicting the emotional states. We propose a novel federated adversarial learning framework for protecting both data and deep neural networks. The proposed framework consists of i) federated learning for data privacy, and ii) adversarial training at the training stage and randomisation at the testing stage for model robustness. The experiments show that our proposed framework can effectively protect the speech data locally and improve the model robustness against a series of adversarial attacks.

* 11 pages, 6 figures, 3 tables 
Access Paper or Ask Questions

Optimizing Speech Recognition For The Edge

Sep 26, 2019
Yuan Shangguan, Jian Li, Liang Qiao, Raziel Alvarez, Ian McGraw

While most deployed speech recognition systems today still run on servers, we are in the midst of a transition towards deployments on edge devices. This leap to the edge is powered by the progression from traditional speech recognition pipelines to end-to-end (E2E) neural architectures, and the parallel development of more efficient neural network topologies and optimization techniques. Thus, we are now able to create highly accurate speech recognizers that are both small and fast enough to execute on typical mobile devices. In this paper, we begin with a baseline RNN-Transducer architecture comprised of Long Short-Term Memory (LSTM) layers. We then experiment with a variety of more computationally efficient layer types, as well as apply optimization techniques like neural connection pruning and parameter quantization to construct a small, high quality, on-device speech recognizer that is an order of magnitude smaller than the baseline system without any optimizations.

Access Paper or Ask Questions

Cross-Modal Knowledge Distillation Method for Automatic Cued Speech Recognition

Jun 25, 2021
Jianrong Wang, Ziyue Tang, Xuewei Li, Mei Yu, Qiang Fang, Li Liu

Cued Speech (CS) is a visual communication system for the deaf or hearing impaired people. It combines lip movements with hand cues to obtain a complete phonetic repertoire. Current deep learning based methods on automatic CS recognition suffer from a common problem, which is the data scarcity. Until now, there are only two public single speaker datasets for French (238 sentences) and British English (97 sentences). In this work, we propose a cross-modal knowledge distillation method with teacher-student structure, which transfers audio speech information to CS to overcome the limited data problem. Firstly, we pretrain a teacher model for CS recognition with a large amount of open source audio speech data, and simultaneously pretrain the feature extractors for lips and hands using CS data. Then, we distill the knowledge from teacher model to the student model with frame-level and sequence-level distillation strategies. Importantly, for frame-level, we exploit multi-task learning to weigh losses automatically, to obtain the balance coefficient. Besides, we establish a five-speaker British English CS dataset for the first time. The proposed method is evaluated on French and British English CS datasets, showing superior CS recognition performance to the state-of-the-art (SOTA) by a large margin.

Access Paper or Ask Questions

Multilingual and crosslingual speech recognition using phonological-vector based phone embeddings

Jul 11, 2021
Chengrui Zhu, Keyu An, Huahuan Zheng, Zhijian Ou

The use of phonological features (PFs) potentially allows language-specific phones to remain linked in training, which is highly desirable for information sharing for multilingual and crosslingual speech recognition methods for low-resourced languages. A drawback suffered by previous methods in using phonological features is that the acoustic-to-PF extraction in a bottom-up way is itself difficult. In this paper, we propose to join phonology driven phone embedding (top-down) and deep neural network (DNN) based acoustic feature extraction (bottom-up) to calculate phone probabilities. The new method is called JoinAP (Joining of Acoustics and Phonology). Remarkably, no inversion from acoustics to phonological features is required for speech recognition. For each phone in the IPA (International Phonetic Alphabet) table, we encode its phonological features to a phonological-vector, and then apply linear or nonlinear transformation of the phonological-vector to obtain the phone embedding. A series of multilingual and crosslingual (both zero-shot and few-shot) speech recognition experiments are conducted on the CommonVoice dataset (German, French, Spanish and Italian) and the AISHLL-1 dataset (Mandarin), and demonstrate the superiority of JoinAP with nonlinear phone embeddings over both JoinAP with linear phone embeddings and the traditional method with flat phone embeddings.

Access Paper or Ask Questions

Hybridized Feature Extraction and Acoustic Modelling Approach for Dysarthric Speech Recognition

Jun 06, 2015
Megha Rughani, D. Shivakrishna

Dysarthria is malfunctioning of motor speech caused by faintness in the human nervous system. It is characterized by the slurred speech along with physical impairment which restricts their communication and creates the lack of confidence and affects the lifestyle. This paper attempt to increase the efficiency of Automatic Speech Recognition (ASR) system for unimpaired speech signal. It describes state of art of research into improving ASR for speakers with dysarthria by means of incorporated knowledge of their speech production. Hybridized approach for feature extraction and acoustic modelling technique along with evolutionary algorithm is proposed for increasing the efficiency of the overall system. Here number of feature vectors are varied and tested the system performance. It is observed that system performance is boosted by genetic algorithm. System with 16 acoustic features optimized with genetic algorithm has obtained highest recognition rate of 98.28% with training time of 5:30:17.

Access Paper or Ask Questions

Transformer-based End-to-End Speech Recognition with Local Dense Synthesizer Attention

Oct 23, 2020
Menglong Xu, Shengqiang Li, Xiao-Lei Zhang

Recently, several studies reported that dot-product selfattention (SA) may not be indispensable to the state-of-theart Transformer models. Motivated by the fact that dense synthesizer attention (DSA), which dispenses with dot products and pairwise interactions, achieved competitive results in many language processing tasks, in this paper, we first propose a DSA-based speech recognition, as an alternative to SA. To reduce the computational complexity and improve the performance, we further propose local DSA (LDSA) to restrict the attention scope of DSA to a local range around the current central frame for speech recognition. Finally, we combine LDSA with SA to extract the local and global information simultaneously. Experimental results on the Ai-shell1 Mandarine speech recognition corpus show that the proposed LDSA-Transformer achieves a character error rate (CER) of 6.49%, which is slightly better than that of the SA-Transformer. Meanwhile, the LDSA-Transformer requires less computation than the SATransformer. The proposed combination method not only achieves a CER of 6.18%, which significantly outperforms the SA-Transformer, but also has roughly the same number of parameters and computational complexity as the latter. The implementation of the multi-head LDSA is available at

* 5 pages, 3 figures 
Access Paper or Ask Questions

Kernel Approximation Methods for Speech Recognition

Jan 13, 2017
Avner May, Alireza Bagheri Garakani, Zhiyun Lu, Dong Guo, Kuan Liu, Aurélien Bellet, Linxi Fan, Michael Collins, Daniel Hsu, Brian Kingsbury, Michael Picheny, Fei Sha

We study large-scale kernel methods for acoustic modeling in speech recognition and compare their performance to deep neural networks (DNNs). We perform experiments on four speech recognition datasets, including the TIMIT and Broadcast News benchmark tasks, and compare these two types of models on frame-level performance metrics (accuracy, cross-entropy), as well as on recognition metrics (word/character error rate). In order to scale kernel methods to these large datasets, we use the random Fourier feature method of Rahimi and Recht (2007). We propose two novel techniques for improving the performance of kernel acoustic models. First, in order to reduce the number of random features required by kernel models, we propose a simple but effective method for feature selection. The method is able to explore a large number of non-linear features while maintaining a compact model more efficiently than existing approaches. Second, we present a number of frame-level metrics which correlate very strongly with recognition performance when computed on the heldout set; we take advantage of these correlations by monitoring these metrics during training in order to decide when to stop learning. This technique can noticeably improve the recognition performance of both DNN and kernel models, while narrowing the gap between them. Additionally, we show that the linear bottleneck method of Sainath et al. (2013) improves the performance of our kernel models significantly, in addition to speeding up training and making the models more compact. Together, these three methods dramatically improve the performance of kernel acoustic models, making their performance comparable to DNNs on the tasks we explored.

Access Paper or Ask Questions