Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"speech recognition": models, code, and papers

Improving Pseudo-label Training For End-to-end Speech Recognition Using Gradient Mask

Oct 08, 2021
Shaoshi Ling, Chen Shen, Meng Cai, Zejun Ma

In the recent trend of semi-supervised speech recognition, both self-supervised representation learning and pseudo-labeling have shown promising results. In this paper, we propose a novel approach to combine their ideas for end-to-end speech recognition model. Without any extra loss function, we utilize the Gradient Mask to optimize the model when training on pseudo-label. This method forces the speech recognition model to predict from the masked input to learn strong acoustic representation and make training robust to label noise. In our semi-supervised experiments, the method can improve the model performance when training on pseudo-label and our method achieved competitive results comparing with other semi-supervised approaches on the Librispeech 100 hours experiments.

  
Access Paper or Ask Questions

Do We Still Need Automatic Speech Recognition for Spoken Language Understanding?

Nov 29, 2021
Lasse Borgholt, Jakob Drachmann Havtorn, Mostafa Abdou, Joakim Edin, Lars Maaløe, Anders Søgaard, Christian Igel

Spoken language understanding (SLU) tasks are usually solved by first transcribing an utterance with automatic speech recognition (ASR) and then feeding the output to a text-based model. Recent advances in self-supervised representation learning for speech data have focused on improving the ASR component. We investigate whether representation learning for speech has matured enough to replace ASR in SLU. We compare learned speech features from wav2vec 2.0, state-of-the-art ASR transcripts, and the ground truth text as input for a novel speech-based named entity recognition task, a cardiac arrest detection task on real-world emergency calls and two existing SLU benchmarks. We show that learned speech features are superior to ASR transcripts on three classification tasks. For machine translation, ASR transcripts are still the better choice. We highlight the intrinsic robustness of wav2vec 2.0 representations to out-of-vocabulary words as key to better performance.

* Under review as a conference paper at ICASSP 2022 
  
Access Paper or Ask Questions

Breaking the Data Barrier: Towards Robust Speech Translation via Adversarial Stability Training

Oct 28, 2019
Qiao Cheng, Meiyuan Fang, Yaqian Han, Jin Huang, Yitao Duan

In a pipeline speech translation system, automatic speech recognition (ASR) system will transmit errors in recognition to the downstream machine translation (MT) system. A standard machine translation system is usually trained on parallel corpus composed of clean text and will perform poorly on text with recognition noise, a gap well known in speech translation community. In this paper, we propose a training architecture which aims at making a neural machine translation model more robust against speech recognition errors. Our approach addresses the encoder and the decoder simultaneously using adversarial learning and data augmentation, respectively. Experimental results on IWSLT2018 speech translation task show that our approach can bridge the gap between the ASR output and the MT input, outperforms the baseline by up to 2.83 BLEU on noisy ASR output, while maintaining close performance on clean text.

* Accepted at the 16th International Workshop on Spoken Language Translation (IWSLT 2019) 
  
Access Paper or Ask Questions

Why does Self-Supervised Learning for Speech Recognition Benefit Speaker Recognition?

Apr 27, 2022
Sanyuan Chen, Yu Wu, Chengyi Wang, Shujie Liu, Zhuo Chen, Peidong Wang, Gang Liu, Jinyu Li, Jian Wu, Xiangzhan Yu, Furu Wei

Recently, self-supervised learning (SSL) has demonstrated strong performance in speaker recognition, even if the pre-training objective is designed for speech recognition. In this paper, we study which factor leads to the success of self-supervised learning on speaker-related tasks, e.g. speaker verification (SV), through a series of carefully designed experiments. Our empirical results on the Voxceleb-1 dataset suggest that the benefit of SSL to SV task is from a combination of mask speech prediction loss, data scale, and model size, while the SSL quantizer has a minor impact. We further employ the integrated gradients attribution method and loss landscape visualization to understand the effectiveness of self-supervised learning for speaker recognition performance.

* Submitted to INTERSPEECH 2022 
  
Access Paper or Ask Questions

CNN-based MultiChannel End-to-End Speech Recognition for everyday home environments

Nov 07, 2018
Nelson Yalta, Shinji Watanabe, Takaaki Hori, Kazuhiro Nakadai, Tetsuya Ogata

Casual conversations involving multiple speakers and noises from surrounding devices are part of everyday environments and pose challenges for automatic speech recognition systems. These challenges in speech recognition are target for the CHiME-5 challenge. In the present study, an attempt is made to overcome these challenges by employing a convolutional neural network (CNN)-based multichannel end-to-end speech recognition system. The system comprises an attention-based encoder-decoder neural network that directly generates a text as an output from a sound input. The mulitchannel CNN encoder, which uses residual connections and batch renormalization, is trained with augmented data, including white noise injection. The experimental results show that the word error rate (WER) was reduced by 11.9% absolute from the end-to-end baseline.

* 5 pages, 1 figure 
  
Access Paper or Ask Questions

Streaming end-to-end multi-talker speech recognition

Nov 26, 2020
Liang Lu, Naoyuki Kanda, Jinyu Li, Yifan Gong

End-to-end multi-talker speech recognition is an emerging research trend in the speech community due to its vast potential in applications such as conversation and meeting transcriptions. To the best of our knowledge, all existing research works are constrained in the offline scenario. In this work, we propose the Streaming Unmixing and Recognition Transducer (SURT) for end-to-end multi-talker speech recognition. Our model employs the Recurrent Neural Network Transducer as the backbone that can meet various latency constraints. We study two different model architectures that are based on a speaker-differentiator encoder and a mask encoder respectively. To train this model, we investigate the widely used Permutation Invariant Training (PIT) approach and the recently introduced Heuristic Error Assignment Training (HEAT) approach. Based on experiments on the publicly available LibriSpeechMix dataset, we show that HEAT can achieve better accuracy compared with PIT, and the SURT model with 120 milliseconds algorithmic latency constraint compares favorably with the offline sequence-to-sequence based baseline model in terms of accuracy.

* 5 pages, 4 figures 
  
Access Paper or Ask Questions

The Role of Phonetic Units in Speech Emotion Recognition

Aug 02, 2021
Jiahong Yuan, Xingyu Cai, Renjie Zheng, Liang Huang, Kenneth Church

We propose a method for emotion recognition through emotiondependent speech recognition using Wav2vec 2.0. Our method achieved a significant improvement over most previously reported results on IEMOCAP, a benchmark emotion dataset. Different types of phonetic units are employed and compared in terms of accuracy and robustness of emotion recognition within and across datasets and languages. Models of phonemes, broad phonetic classes, and syllables all significantly outperform the utterance model, demonstrating that phonetic units are helpful and should be incorporated in speech emotion recognition. The best performance is from using broad phonetic classes. Further research is needed to investigate the optimal set of broad phonetic classes for the task of emotion recognition. Finally, we found that Wav2vec 2.0 can be fine-tuned to recognize coarser-grained or larger phonetic units than phonemes, such as broad phonetic classes and syllables.

  
Access Paper or Ask Questions

Automatic Speech Recognition using limited vocabulary: A survey

Aug 23, 2021
Jean Louis K. E. Fendji, Diane M. Tala, Blaise O. Yenke, Marcellin Atemkeng

Automatic Speech Recognition (ASR) is an active field of research due to its huge number of applications and the proliferation of interfaces or computing devices that can support speech processing. But the bulk of applications is based on well-resourced languages that overshadow under-resourced ones. Yet ASR represents an undeniable mean to promote such languages, especially when design human-to-human or human-to-machine systems involving illiterate people. An approach to design an ASR system targeting under-resourced languages is to start with a limited vocabulary. ASR using a limited vocabulary is a subset of the speech recognition problem that focuses on the recognition of a small number of words or sentences. This paper aims to provide a comprehensive view of mechanisms behind ASR systems as well as techniques, tools, projects, recent contributions, and possibly future directions in ASR using a limited vocabulary. This work consequently provides a way to go when designing ASR system using limited vocabulary. Although an emphasis is put on limited vocabulary, most of the tools and techniques reported in this survey applied to ASR systems in general.

* 20 pages, 9 figures, 6 tables, submitted to IEEE ACCESS for possible publication 
  
Access Paper or Ask Questions
<<
23
24
25
26
27
28
29
30
31
32
33
34
35
>>