Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"photo": models, code, and papers

Generative Adversarial Talking Head: Bringing Portraits to Life with a Weakly Supervised Neural Network

Mar 28, 2018
Hai X. Pham, Yuting Wang, Vladimir Pavlovic

This paper presents Generative Adversarial Talking Head (GATH), a novel deep generative neural network that enables fully automatic facial expression synthesis of an arbitrary portrait with continuous action unit (AU) coefficients. Specifically, our model directly manipulates image pixels to make the unseen subject in the still photo express various emotions controlled by values of facial AU coefficients, while maintaining her personal characteristics, such as facial geometry, skin color and hair style, as well as the original surrounding background. In contrast to prior work, GATH is purely data-driven and it requires neither a statistical face model nor image processing tricks to enact facial deformations. Additionally, our model is trained from unpaired data, where the input image, with its auxiliary identity label taken from abundance of still photos in the wild, and the target frame are from different persons. In order to effectively learn such model, we propose a novel weakly supervised adversarial learning framework that consists of a generator, a discriminator, a classifier and an action unit estimator. Our work gives rise to template-and-target-free expression editing, where still faces can be effortlessly animated with arbitrary AU coefficients provided by the user.

* Fix typos, add youtube link of supplementary video 

Neural Parameterization for Dynamic Human Head Editing

Jul 01, 2022
Li Ma, Xiaoyu Li, Jing Liao, Xuan Wang, Qi Zhang, Jue Wang, Pedro Sander

Implicit radiance functions emerged as a powerful scene representation for reconstructing and rendering photo-realistic views of a 3D scene. These representations, however, suffer from poor editability. On the other hand, explicit representations such as polygonal meshes allow easy editing but are not as suitable for reconstructing accurate details in dynamic human heads, such as fine facial features, hair, teeth, and eyes. In this work, we present Neural Parameterization (NeP), a hybrid representation that provides the advantages of both implicit and explicit methods. NeP is capable of photo-realistic rendering while allowing fine-grained editing of the scene geometry and appearance. We first disentangle the geometry and appearance by parameterizing the 3D geometry into 2D texture space. We enable geometric editability by introducing an explicit linear deformation blending layer. The deformation is controlled by a set of sparse key points, which can be explicitly and intuitively displaced to edit the geometry. For appearance, we develop a hybrid 2D texture consisting of an explicit texture map for easy editing and implicit view and time-dependent residuals to model temporal and view variations. We compare our method to several reconstruction and editing baselines. The results show that the NeP achieves almost the same level of rendering accuracy while maintaining high editability.

* 15 pages, 16 figures 

Consistent Depth Prediction under Various Illuminations using Dilated Cross Attention

Dec 15, 2021
Zitian Zhang, Chuhua Xian

In this paper, we aim to solve the problem of consistent depth prediction in complex scenes under various illumination conditions. The existing indoor datasets based on RGB-D sensors or virtual rendering have two critical limitations - sparse depth maps (NYU Depth V2) and non-realistic illumination (SUN CG, SceneNet RGB-D). We propose to use internet 3D indoor scenes and manually tune their illuminations to render photo-realistic RGB photos and their corresponding depth and BRDF maps, obtaining a new indoor depth dataset called Vari dataset. We propose a simple convolutional block named DCA by applying depthwise separable dilated convolution on encoded features to process global information and reduce parameters. We perform cross attention on these dilated features to retain the consistency of depth prediction under different illuminations. Our method is evaluated by comparing it with current state-of-the-art methods on Vari dataset and a significant improvement is observed in our experiments. We also conduct the ablation study, finetune our model on NYU Depth V2 and also evaluate on real-world data to further validate the effectiveness of our DCA block. The code, pre-trained weights and Vari dataset are open-sourced.

* 14 pages 

Face Destylization

Feb 05, 2018
Fatemeh Shiri, Xin Yu, Fatih Porikli, Piotr Koniusz

Numerous style transfer methods which produce artistic styles of portraits have been proposed to date. However, the inverse problem of converting the stylized portraits back into realistic faces is yet to be investigated thoroughly. Reverting an artistic portrait to its original photo-realistic face image has potential to facilitate human perception and identity analysis. In this paper, we propose a novel Face Destylization Neural Network (FDNN) to restore the latent photo-realistic faces from the stylized ones. We develop a Style Removal Network composed of convolutional, fully-connected and deconvolutional layers. The convolutional layers are designed to extract facial components from stylized face images. Consecutively, the fully-connected layer transfers the extracted feature maps of stylized images into the corresponding feature maps of real faces and the deconvolutional layers generate real faces from the transferred feature maps. To enforce the destylized faces to be similar to authentic face images, we employ a discriminative network, which consists of convolutional and fully connected layers. We demonstrate the effectiveness of our network by conducting experiments on an extensive set of synthetic images. Furthermore, we illustrate our network can recover faces from stylized portraits and real paintings for which the stylized data was unavailable during the training phase.


Unsupervised Coherent Video Cartoonization with Perceptual Motion Consistency

Apr 02, 2022
Zhenhuan Liu, Liang Li, Huajie Jiang, Xin Jin, Dandan Tu, Shuhui Wang, Zheng-Jun Zha

In recent years, creative content generations like style transfer and neural photo editing have attracted more and more attention. Among these, cartoonization of real-world scenes has promising applications in entertainment and industry. Different from image translations focusing on improving the style effect of generated images, video cartoonization has additional requirements on the temporal consistency. In this paper, we propose a spatially-adaptive semantic alignment framework with perceptual motion consistency for coherent video cartoonization in an unsupervised manner. The semantic alignment module is designed to restore deformation of semantic structure caused by spatial information lost in the encoder-decoder architecture. Furthermore, we devise the spatio-temporal correlative map as a style-independent, global-aware regularization on the perceptual motion consistency. Deriving from similarity measurement of high-level features in photo and cartoon frames, it captures global semantic information beyond raw pixel-value in optical flow. Besides, the similarity measurement disentangles temporal relationships from domain-specific style properties, which helps regularize the temporal consistency without hurting style effects of cartoon images. Qualitative and quantitative experiments demonstrate our method is able to generate highly stylistic and temporal consistent cartoon videos.


Cross-Domain Visual Matching via Generalized Similarity Measure and Feature Learning

May 13, 2016
Liang Lin, Guangrun Wang, Wangmeng Zuo, Xiangchu Feng, Lei Zhang

Cross-domain visual data matching is one of the fundamental problems in many real-world vision tasks, e.g., matching persons across ID photos and surveillance videos. Conventional approaches to this problem usually involves two steps: i) projecting samples from different domains into a common space, and ii) computing (dis-)similarity in this space based on a certain distance. In this paper, we present a novel pairwise similarity measure that advances existing models by i) expanding traditional linear projections into affine transformations and ii) fusing affine Mahalanobis distance and Cosine similarity by a data-driven combination. Moreover, we unify our similarity measure with feature representation learning via deep convolutional neural networks. Specifically, we incorporate the similarity measure matrix into the deep architecture, enabling an end-to-end way of model optimization. We extensively evaluate our generalized similarity model in several challenging cross-domain matching tasks: person re-identification under different views and face verification over different modalities (i.e., faces from still images and videos, older and younger faces, and sketch and photo portraits). The experimental results demonstrate superior performance of our model over other state-of-the-art methods.

* To appear in IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 2016 

Multi-Face Tracking by Extended Bag-of-Tracklets in Egocentric Videos

Jan 13, 2016
Maedeh Aghaei, Mariella Dimiccoli, Petia Radeva

Wearable cameras offer a hands-free way to record egocentric images of daily experiences, where social events are of special interest. The first step towards detection of social events is to track the appearance of multiple persons involved in it. In this paper, we propose a novel method to find correspondences of multiple faces in low temporal resolution egocentric videos acquired through a wearable camera. This kind of photo-stream imposes additional challenges to the multi-tracking problem with respect to conventional videos. Due to the free motion of the camera and to its low temporal resolution, abrupt changes in the field of view, in illumination condition and in the target location are highly frequent. To overcome such difficulties, we propose a multi-face tracking method that generates a set of tracklets through finding correspondences along the whole sequence for each detected face and takes advantage of the tracklets redundancy to deal with unreliable ones. Similar tracklets are grouped into the so called extended bag-of-tracklets (eBoT), which is aimed to correspond to a specific person. Finally, a prototype tracklet is extracted for each eBoT, where the occurred occlusions are estimated by relying on a new measure of confidence. We validated our approach over an extensive dataset of egocentric photo-streams and compared it to state of the art methods, demonstrating its effectiveness and robustness.

* 27 pages, 18 figures, submitted to computer vision and image understanding journal 

Active Neural Localization

Jan 24, 2018
Devendra Singh Chaplot, Emilio Parisotto, Ruslan Salakhutdinov

Localization is the problem of estimating the location of an autonomous agent from an observation and a map of the environment. Traditional methods of localization, which filter the belief based on the observations, are sub-optimal in the number of steps required, as they do not decide the actions taken by the agent. We propose "Active Neural Localizer", a fully differentiable neural network that learns to localize accurately and efficiently. The proposed model incorporates ideas of traditional filtering-based localization methods, by using a structured belief of the state with multiplicative interactions to propagate belief, and combines it with a policy model to localize accurately while minimizing the number of steps required for localization. Active Neural Localizer is trained end-to-end with reinforcement learning. We use a variety of simulation environments for our experiments which include random 2D mazes, random mazes in the Doom game engine and a photo-realistic environment in the Unreal game engine. The results on the 2D environments show the effectiveness of the learned policy in an idealistic setting while results on the 3D environments demonstrate the model's capability of learning the policy and perceptual model jointly from raw-pixel based RGB observations. We also show that a model trained on random textures in the Doom environment generalizes well to a photo-realistic office space environment in the Unreal engine.

* Under Review at ICLR-18, 15 pages, 7 figures 

S2FGAN: Semantically Aware Interactive Sketch-to-Face Translation

Nov 30, 2020
Yan Yang, Md Zakir Hossain, Tom Gedeon, Shafin Rahman

Interactive facial image manipulation attempts to edit single and multiple face attributes using a photo-realistic face and/or semantic mask as input. In the absence of the photo-realistic image (only sketch/mask available), previous methods only retrieve the original face but ignore the potential of aiding model controllability and diversity in the translation process. This paper proposes a sketch-to-image generation framework called S2FGAN, aiming to improve users' ability to interpret and flexibility of face attribute editing from a simple sketch. The proposed framework modifies the constrained latent space semantics trained on Generative Adversarial Networks (GANs). We employ two latent spaces to control the face appearance and adjust the desired attributes of the generated face. Instead of constraining the translation process by using a reference image, the users can command the model to retouch the generated images by involving the semantic information in the generation process. In this way, our method can manipulate single or multiple face attributes by only specifying attributes to be changed. Extensive experimental results on CelebAMask-HQ dataset empirically shows our superior performance and effectiveness on this task. Our method successfully outperforms state-of-the-art methods on attribute manipulation by exploiting greater control of attribute intensity.


Style and Pose Control for Image Synthesis of Humans from a Single Monocular View

Feb 22, 2021
Kripasindhu Sarkar, Vladislav Golyanik, Lingjie Liu, Christian Theobalt

Photo-realistic re-rendering of a human from a single image with explicit control over body pose, shape and appearance enables a wide range of applications, such as human appearance transfer, virtual try-on, motion imitation, and novel view synthesis. While significant progress has been made in this direction using learning-based image generation tools, such as GANs, existing approaches yield noticeable artefacts such as blurring of fine details, unrealistic distortions of the body parts and garments as well as severe changes of the textures. We, therefore, propose a new method for synthesising photo-realistic human images with explicit control over pose and part-based appearance, i.e., StylePoseGAN, where we extend a non-controllable generator to accept conditioning of pose and appearance separately. Our network can be trained in a fully supervised way with human images to disentangle pose, appearance and body parts, and it significantly outperforms existing single image re-rendering methods. Our disentangled representation opens up further applications such as garment transfer, motion transfer, virtual try-on, head (identity) swap and appearance interpolation. StylePoseGAN achieves state-of-the-art image generation fidelity on common perceptual metrics compared to the current best-performing methods and convinces in a comprehensive user study.