Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"photo": models, code, and papers

Adversarial Image Perturbation for Privacy Protection -- A Game Theory Perspective

Jul 26, 2017
Seong Joon Oh, Mario Fritz, Bernt Schiele

Users like sharing personal photos with others through social media. At the same time, they might want to make automatic identification in such photos difficult or even impossible. Classic obfuscation methods such as blurring are not only unpleasant but also not as effective as one would expect. Recent studies on adversarial image perturbations (AIP) suggest that it is possible to confuse recognition systems effectively without unpleasant artifacts. However, in the presence of counter measures against AIPs, it is unclear how effective AIP would be in particular when the choice of counter measure is unknown. Game theory provides tools for studying the interaction between agents with uncertainties in the strategies. We introduce a general game theoretical framework for the user-recogniser dynamics, and present a case study that involves current state of the art AIP and person recognition techniques. We derive the optimal strategy for the user that assures an upper bound on the recognition rate independent of the recogniser's counter measure. Code is available at https://goo.gl/hgvbNK.

* To appear at ICCV'17 
  

MW-GAN: Multi-Warping GAN for Caricature Generation with Multi-Style Geometric Exaggeration

Jan 07, 2020
Haodi Hou, Jing Huo, Jing Wu, Yu-Kun Lai, Yang Gao

Given an input face photo, the goal of caricature generation is to produce stylized, exaggerated caricatures that share the same identity as the photo. It requires simultaneous style transfer and shape exaggeration with rich diversity, and meanwhile preserving the identity of the input. To address this challenging problem, we propose a novel framework called Multi-Warping GAN (MW-GAN), including a style network and a geometric network that are designed to conduct style transfer and geometric exaggeration respectively. We bridge the gap between the style and landmarks of an image with corresponding latent code spaces by a dual way design, so as to generate caricatures with arbitrary styles and geometric exaggeration, which can be specified either through random sampling of latent code or from a given caricature sample. Besides, we apply identity preserving loss to both image space and landmark space, leading to a great improvement in quality of generated caricatures. Experiments show that caricatures generated by MW-GAN have better quality than existing methods.

  

Creating Capsule Wardrobes from Fashion Images

Apr 14, 2018
Wei-Lin Hsiao, Kristen Grauman

We propose to automatically create capsule wardrobes. Given an inventory of candidate garments and accessories, the algorithm must assemble a minimal set of items that provides maximal mix-and-match outfits. We pose the task as a subset selection problem. To permit efficient subset selection over the space of all outfit combinations, we develop submodular objective functions capturing the key ingredients of visual compatibility, versatility, and user-specific preference. Since adding garments to a capsule only expands its possible outfits, we devise an iterative approach to allow near-optimal submodular function maximization. Finally, we present an unsupervised approach to learn visual compatibility from "in the wild" full body outfit photos; the compatibility metric translates well to cleaner catalog photos and improves over existing methods. Our results on thousands of pieces from popular fashion websites show that automatic capsule creation has potential to mimic skilled fashionistas in assembling flexible wardrobes, while being significantly more scalable.

* Accepted to CVPR 2018 
  

Wavelet-Based Dual-Branch Network for Image Demoireing

Jul 17, 2020
Lin Liu, Jianzhuang Liu, Shanxin Yuan, Gregory Slabaugh, Ales Leonardis, Wengang Zhou, Qi Tian

When smartphone cameras are used to take photos of digital screens, usually moire patterns result, severely degrading photo quality. In this paper, we design a wavelet-based dual-branch network (WDNet) with a spatial attention mechanism for image demoireing. Existing image restoration methods working in the RGB domain have difficulty in distinguishing moire patterns from true scene texture. Unlike these methods, our network removes moire patterns in the wavelet domain to separate the frequencies of moire patterns from the image content. The network combines dense convolution modules and dilated convolution modules supporting large receptive fields. Extensive experiments demonstrate the effectiveness of our method, and we further show that WDNet generalizes to removing moire artifacts on non-screen images. Although designed for image demoireing, WDNet has been applied to two other low-levelvision tasks, outperforming state-of-the-art image deraining and derain-drop methods on the Rain100h and Raindrop800 data sets, respectively.

* Accepted to ECCV 2020 
  

Semantic-driven Colorization

Jun 18, 2020
Man M. Ho, Lu Zhang, Alexander Raake, Jinjia Zhou

Recent deep colorization works predict the semantic information implicitly while learning to colorize black-and-white photographic images. As a consequence, the generated color is easier to be overflowed, and the semantic faults are invisible. As human experience in coloring, the human first recognize which objects and their location in the photo, imagine which color is plausible for the objects as in real life, then colorize it. In this study, we simulate that human-like action to firstly let our network learn to segment what is in the photo, then colorize it. Therefore, our network can choose a plausible color under semantic constraint for specific objects, and give discriminative colors between them. Moreover, the segmentation map becomes understandable and interactable for the user. Our models are trained on PASCAL-Context and evaluated on selected images from the public domain and COCO-Stuff, which has several unseen categories compared to training data. As seen from the experimental results, our colorization system can provide plausible colors for specific objects and generate harmonious colors competitive with state-of-the-art methods.

* This work is available at https://minhmanho.github.io/semantic-driven_colorization/ 
  

3D Magic Mirror: Automatic Video to 3D Caricature Translation

Jun 03, 2019
Yudong Guo, Luo Jiang, Lin Cai, Juyong Zhang

Caricature is an abstraction of a real person which distorts or exaggerates certain features, but still retains a likeness. While most existing works focus on 3D caricature reconstruction from 2D caricatures or translating 2D photos to 2D caricatures, this paper presents a real-time and automatic algorithm for creating expressive 3D caricatures with caricature style texture map from 2D photos or videos. To solve this challenging ill-posed reconstruction problem and cross-domain translation problem, we first reconstruct the 3D face shape for each frame, and then translate 3D face shape from normal style to caricature style by a novel identity and expression preserving VAE-CycleGAN. Based on a labeling formulation, the caricature texture map is constructed from a set of multi-view caricature images generated by CariGANs. The effectiveness and efficiency of our method are demonstrated by comparison with baseline implementations. The perceptual study shows that the 3D caricatures generated by our method meet people's expectations of 3D caricature style.

  

Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Image Stylization

Nov 22, 2018
Nikolay Jetchev, Urs Bergmann, Gokhan Yildirim

Parametric generative deep models are state-of-the-art for photo and non-photo realistic image stylization. However, learning complicated image representations requires compute-intense models parametrized by a huge number of weights, which in turn requires large datasets to make learning successful. Non-parametric exemplar-based generation is a technique that works well to reproduce style from small datasets, but is also compute-intensive. These aspects are a drawback for the practice of digital AI artists: typically one wants to use a small set of stylization images, and needs a fast flexible model in order to experiment with it. With this motivation, our work has these contributions: (i) a novel stylization method called Fully Adversarial Mosaics (FAMOS) that combines the strengths of both parametric and non-parametric approaches; (ii) multiple ablations and image examples that analyze the method and show its capabilities; (iii) source code that will empower artists and machine learning researchers to use and modify FAMOS.

* Accepted at the NIPS 2018 workshop on Machine Learning for Creativity and Design 
  

Deep Cropping via Attention Box Prediction and Aesthetics Assessment

Oct 22, 2017
Wenguan Wang, Jianbing Shen

We model the photo cropping problem as a cascade of attention box regression and aesthetic quality classification, based on deep learning. A neural network is designed that has two branches for predicting attention bounding box and analyzing aesthetics, respectively. The predicted attention box is treated as an initial crop window where a set of cropping candidates are generated around it, without missing important information. Then, aesthetics assessment is employed to select the final crop as the one with the best aesthetic quality. With our network, cropping candidates share features within full-image convolutional feature maps, thus avoiding repeated feature computation and leading to higher computation efficiency. Via leveraging rich data for attention prediction and aesthetics assessment, the proposed method produces high-quality cropping results, even with the limited availability of training data for photo cropping. The experimental results demonstrate the competitive results and fast processing speed (5 fps with all steps).

* Accepted by ICCV2017 
  
<<
32
33
34
35
36
37
38
39
40
41
42
43
44
>>