Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"photo": models, code, and papers

Deep Weakly Supervised Positioning

Apr 10, 2021
Ruoyu Wang, Xuchu Xu, Li Ding, Yang Huang, Chen Feng

PoseNet can map a photo to the position where it is taken, which is appealing in robotics. However, training PoseNet requires full supervision, where ground truth positions are non-trivial to obtain. Can we train PoseNet without knowing the ground truth positions for each observation? We show that this is possible via constraint-based weak-supervision, leading to the proposed framework: DeepGPS. Particularly, using wheel-encoder-estimated distances traveled by a robot along random straight line segments as constraints between PoseNet outputs, DeepGPS can achieve a relative positioning error of less than 2%. Moreover, training DeepGPS can be done as auto-calibration with almost no human attendance, which is more attractive than its competing methods that typically require careful and expert-level manual calibration. We conduct various experiments on simulated and real datasets to demonstrate the general applicability, effectiveness, and accuracy of DeepGPS, and perform a comprehensive analysis of its robustness. Our code is available at

* 8 pages, 8 figures, submitted to IEEE Robotics and Automation Letters (RA-L) and 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2021) 
Access Paper or Ask Questions

Holistic Multi-View Building Analysis in the Wild with Projection Pooling

Sep 25, 2020
Zbigniew Wojna, Krzysztof Maziarz, Łukasz Jocz, Robert Pałuba, Robert Kozikowski, Iasonas Kokkinos

We address six different classification tasks related to fine-grained building attributes: construction type, number of floors, pitch and geometry of the roof, facade material, and occupancy class. Tackling such a problem of remote building analysis became possible only recently due to growing large scale datasets of urban scenes. To this end, we introduce a new benchmarking dataset, consisting of 49426 top-view and street-view images of 9674 buildings. These photos are further assembled, together with the geometric metadata. The dataset showcases a variety of real-world challenges, such as occlusions, blur, partially visible objects, and a broad spectrum of buildings. We propose a new projection pooling layer, creating a unified, top-view representation of the top-view and the side views in a high-dimensional space. It allows us to utilize the building and imagery metadata seamlessly. Introducing this layer improves classification accuracy - compared to highly tuned baseline models - indicating its suitability for building analysis.

Access Paper or Ask Questions

Face Sketch Synthesis with Style Transfer using Pyramid Column Feature

Sep 18, 2020
Chaofeng Chen, Xiao Tan, Kwan-Yee K. Wong

In this paper, we propose a novel framework based on deep neural networks for face sketch synthesis from a photo. Imitating the process of how artists draw sketches, our framework synthesizes face sketches in a cascaded manner. A content image is first generated that outlines the shape of the face and the key facial features. Textures and shadings are then added to enrich the details of the sketch. We utilize a fully convolutional neural network (FCNN) to create the content image, and propose a style transfer approach to introduce textures and shadings based on a newly proposed pyramid column feature. We demonstrate that our style transfer approach based on the pyramid column feature can not only preserve more sketch details than the common style transfer method, but also surpasses traditional patch based methods. Quantitative and qualitative evaluations suggest that our framework outperforms other state-of-the-arts methods, and can also generalize well to different test images. Codes are available at

* WACV2018 
Access Paper or Ask Questions

Controlling generative models with continuous factors of variations

Jan 28, 2020
Antoine Plumerault, Hervé Le Borgne, Céline Hudelot

Recent deep generative models are able to provide photo-realistic images as well as visual or textual content embeddings useful to address various tasks of computer vision and natural language processing. Their usefulness is nevertheless often limited by the lack of control over the generative process or the poor understanding of the learned representation. To overcome these major issues, very recent work has shown the interest of studying the semantics of the latent space of generative models. In this paper, we propose to advance on the interpretability of the latent space of generative models by introducing a new method to find meaningful directions in the latent space of any generative model along which we can move to control precisely specific properties of the generated image like the position or scale of the object in the image. Our method does not require human annotations and is particularly well suited for the search of directions encoding simple transformations of the generated image, such as translation, zoom or color variations. We demonstrate the effectiveness of our method qualitatively and quantitatively, both for GANs and variational auto-encoders.

* Accepted as a poster presentation at the International Conference for Learning Representations (ICLR), 2020 
Access Paper or Ask Questions

Faster RER-CNN: application to the detection of vehicles in aerial images

Sep 20, 2018
Jean Ogier du Terrail, Frédéric Jurie

Detecting small vehicles in aerial images is a difficult job that can be challenging even for humans. Rotating objects, low resolution, small inter-class variability and very large images comprising complicated backgrounds render the work of photo-interpreters tedious and wearisome. Unfortunately even the best classical detection pipelines like Faster R-CNN cannot be used off-the-shelf with good results because they were built to process object centric images from day-to-day life with multi-scale vertical objects. In this work we build on the Faster R-CNN approach to turn it into a detection framework that deals appropriately with the rotation equivariance inherent to any aerial image task. This new pipeline (Faster Rotation Equivariant Regions CNN) gives, without any bells and whistles, state-of-the-art results on one of the most challenging aerial imagery datasets: VeDAI and give good results w.r.t. the baseline Faster R-CNN on two others: Munich and GoogleEarth .

* technical report 
Access Paper or Ask Questions

ReenactGAN: Learning to Reenact Faces via Boundary Transfer

Jul 29, 2018
Wayne Wu, Yunxuan Zhang, Cheng Li, Chen Qian, Chen Change Loy

We present a novel learning-based framework for face reenactment. The proposed method, known as ReenactGAN, is capable of transferring facial movements and expressions from monocular video input of an arbitrary person to a target person. Instead of performing a direct transfer in the pixel space, which could result in structural artifacts, we first map the source face onto a boundary latent space. A transformer is subsequently used to adapt the boundary of source face to the boundary of target face. Finally, a target-specific decoder is used to generate the reenacted target face. Thanks to the effective and reliable boundary-based transfer, our method can perform photo-realistic face reenactment. In addition, ReenactGAN is appealing in that the whole reenactment process is purely feed-forward, and thus the reenactment process can run in real-time (30 FPS on one GTX 1080 GPU). Dataset and model will be publicly available at

* Accepted to ECCV 2018. Project page: 
Access Paper or Ask Questions

NIMA: Neural Image Assessment

Apr 26, 2018
Hossein Talebi, Peyman Milanfar

Automatically learned quality assessment for images has recently become a hot topic due to its usefulness in a wide variety of applications such as evaluating image capture pipelines, storage techniques and sharing media. Despite the subjective nature of this problem, most existing methods only predict the mean opinion score provided by datasets such as AVA [1] and TID2013 [2]. Our approach differs from others in that we predict the distribution of human opinion scores using a convolutional neural network. Our architecture also has the advantage of being significantly simpler than other methods with comparable performance. Our proposed approach relies on the success (and retraining) of proven, state-of-the-art deep object recognition networks. Our resulting network can be used to not only score images reliably and with high correlation to human perception, but also to assist with adaptation and optimization of photo editing/enhancement algorithms in a photographic pipeline. All this is done without need for a "golden" reference image, consequently allowing for single-image, semantic- and perceptually-aware, no-reference quality assessment.

* IEEE Transactions on Image Processing 2018 
Access Paper or Ask Questions

ExprGAN: Facial Expression Editing with Controllable Expression Intensity

Sep 13, 2017
Hui Ding, Kumar Sricharan, Rama Chellappa

Facial expression editing is a challenging task as it needs a high-level semantic understanding of the input face image. In conventional methods, either paired training data is required or the synthetic face resolution is low. Moreover, only the categories of facial expression can be changed. To address these limitations, we propose an Expression Generative Adversarial Network (ExprGAN) for photo-realistic facial expression editing with controllable expression intensity. An expression controller module is specially designed to learn an expressive and compact expression code in addition to the encoder-decoder network. This novel architecture enables the expression intensity to be continuously adjusted from low to high. We further show that our ExprGAN can be applied for other tasks, such as expression transfer, image retrieval, and data augmentation for training improved face expression recognition models. To tackle the small size of the training database, an effective incremental learning scheme is proposed. Quantitative and qualitative evaluations on the widely used Oulu-CASIA dataset demonstrate the effectiveness of ExprGAN.

Access Paper or Ask Questions

Self-recoverable Adversarial Examples: A New Effective Protection Mechanism in Social Networks

Apr 26, 2022
Jiawei Zhang, Jinwei Wang, Hao Wang, Xiangyang Luo

Malicious intelligent algorithms greatly threaten the security of social users' privacy by detecting and analyzing the uploaded photos to social network platforms. The destruction to DNNs brought by the adversarial attack sparks the potential that adversarial examples serve as a new protection mechanism for privacy security in social networks. However, the existing adversarial example does not have recoverability for serving as an effective protection mechanism. To address this issue, we propose a recoverable generative adversarial network to generate self-recoverable adversarial examples. By modeling the adversarial attack and recovery as a united task, our method can minimize the error of the recovered examples while maximizing the attack ability, resulting in better recoverability of adversarial examples. To further boost the recoverability of these examples, we exploit a dimension reducer to optimize the distribution of adversarial perturbation. The experimental results prove that the adversarial examples generated by the proposed method present superior recoverability, attack ability, and robustness on different datasets and network architectures, which ensure its effectiveness as a protection mechanism in social networks.

* 13 pages, 11 figures 
Access Paper or Ask Questions