Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"photo": models, code, and papers

CheXpedition: Investigating Generalization Challenges for Translation of Chest X-Ray Algorithms to the Clinical Setting

Feb 26, 2020
Pranav Rajpurkar, Anirudh Joshi, Anuj Pareek, Phil Chen, Amirhossein Kiani, Jeremy Irvin, Andrew Y. Ng, Matthew P. Lungren

Although there have been several recent advances in the application of deep learning algorithms to chest x-ray interpretation, we identify three major challenges for the translation of chest x-ray algorithms to the clinical setting. We examine the performance of the top 10 performing models on the CheXpert challenge leaderboard on three tasks: (1) TB detection, (2) pathology detection on photos of chest x-rays, and (3) pathology detection on data from an external institution. First, we find that the top 10 chest x-ray models on the CheXpert competition achieve an average AUC of 0.851 on the task of detecting TB on two public TB datasets without fine-tuning or including the TB labels in training data. Second, we find that the average performance of the models on photos of x-rays (AUC = 0.916) is similar to their performance on the original chest x-ray images (AUC = 0.924). Third, we find that the models tested on an external dataset either perform comparably to or exceed the average performance of radiologists. We believe that our investigation will inform rapid translation of deep learning algorithms to safe and effective clinical decision support tools that can be validated prospectively with large impact studies and clinical trials.

* Accepted as workshop paper at ACM Conference on Health, Inference, and Learning (CHIL) 2020 
Access Paper or Ask Questions

FACIAL: Synthesizing Dynamic Talking Face with Implicit Attribute Learning

Aug 18, 2021
Chenxu Zhang, Yifan Zhao, Yifei Huang, Ming Zeng, Saifeng Ni, Madhukar Budagavi, Xiaohu Guo

In this paper, we propose a talking face generation method that takes an audio signal as input and a short target video clip as reference, and synthesizes a photo-realistic video of the target face with natural lip motions, head poses, and eye blinks that are in-sync with the input audio signal. We note that the synthetic face attributes include not only explicit ones such as lip motions that have high correlations with speech, but also implicit ones such as head poses and eye blinks that have only weak correlation with the input audio. To model such complicated relationships among different face attributes with input audio, we propose a FACe Implicit Attribute Learning Generative Adversarial Network (FACIAL-GAN), which integrates the phonetics-aware, context-aware, and identity-aware information to synthesize the 3D face animation with realistic motions of lips, head poses, and eye blinks. Then, our Rendering-to-Video network takes the rendered face images and the attention map of eye blinks as input to generate the photo-realistic output video frames. Experimental results and user studies show our method can generate realistic talking face videos with not only synchronized lip motions, but also natural head movements and eye blinks, with better qualities than the results of state-of-the-art methods.

* 10 pages, 9 figures. Accepted by ICCV 2021 
Access Paper or Ask Questions

Guided Facial Skin Color Correction

May 19, 2021
Keiichiro Shirai, Tatsuya Baba, Shunsuke Ono, Masahiro Okuda, Yusuke Tatesumi, Paul Perrotin

This paper proposes an automatic image correction method for portrait photographs, which promotes consistency of facial skin color by suppressing skin color changes due to background colors. In portrait photographs, skin color is often distorted due to the lighting environment (e.g., light reflected from a colored background wall and over-exposure by a camera strobe), and if the photo is artificially combined with another background color, this color change is emphasized, resulting in an unnatural synthesized result. In our framework, after roughly extracting the face region and rectifying the skin color distribution in a color space, we perform color and brightness correction around the face in the original image to achieve a proper color balance of the facial image, which is not affected by luminance and background colors. Unlike conventional algorithms for color correction, our final result is attained by a color correction process with a guide image. In particular, our guided image filtering for the color correction does not require a perfectly-aligned guide image required in the original guide image filtering method proposed by He et al. Experimental results show that our method generates more natural results than conventional methods on not only headshot photographs but also natural scene photographs. We also show automatic yearbook style photo generation as an another application.

* 12 pages, 16 figures 
Access Paper or Ask Questions

Conditional Sequential Modulation for Efficient Global Image Retouching

Sep 22, 2020
Jingwen He, Yihao Liu, Yu Qiao, Chao Dong

Photo retouching aims at enhancing the aesthetic visual quality of images that suffer from photographic defects such as over/under exposure, poor contrast, inharmonious saturation. Practically, photo retouching can be accomplished by a series of image processing operations. In this paper, we investigate some commonly-used retouching operations and mathematically find that these pixel-independent operations can be approximated or formulated by multi-layer perceptrons (MLPs). Based on this analysis, we propose an extremely light-weight framework - Conditional Sequential Retouching Network (CSRNet) - for efficient global image retouching. CSRNet consists of a base network and a condition network. The base network acts like an MLP that processes each pixel independently and the condition network extracts the global features of the input image to generate a condition vector. To realize retouching operations, we modulate the intermediate features using Global Feature Modulation (GFM), of which the parameters are transformed by condition vector. Benefiting from the utilization of $1\times1$ convolution, CSRNet only contains less than 37k trainable parameters, which is orders of magnitude smaller than existing learning-based methods. Extensive experiments show that our method achieves state-of-the-art performance on the benchmark MIT-Adobe FiveK dataset quantitively and qualitatively. Code is available at

* ECCV 2020 
Access Paper or Ask Questions

Structure Preserving Large Imagery Reconstruction

Sep 13, 2014
Ju Shen, Jianjun Yang, Sami Taha-abusneineh, Bryson Payne, Markus Hitz

With the explosive growth of web-based cameras and mobile devices, billions of photographs are uploaded to the internet. We can trivially collect a huge number of photo streams for various goals, such as image clustering, 3D scene reconstruction, and other big data applications. However, such tasks are not easy due to the fact the retrieved photos can have large variations in their view perspectives, resolutions, lighting, noises, and distortions. Fur-thermore, with the occlusion of unexpected objects like people, vehicles, it is even more challenging to find feature correspondences and reconstruct re-alistic scenes. In this paper, we propose a structure-based image completion algorithm for object removal that produces visually plausible content with consistent structure and scene texture. We use an edge matching technique to infer the potential structure of the unknown region. Driven by the estimated structure, texture synthesis is performed automatically along the estimated curves. We evaluate the proposed method on different types of images: from highly structured indoor environment to natural scenes. Our experimental results demonstrate satisfactory performance that can be potentially used for subsequent big data processing, such as image localization, object retrieval, and scene reconstruction. Our experiments show that this approach achieves favorable results that outperform existing state-of-the-art techniques.

Access Paper or Ask Questions

Extract and Merge: Merging extracted humans from different images utilizing Mask R-CNN

Aug 01, 2019
Asati Minkesh, Kraisittipong Worranitta, Miyachi Taizo

Selecting human objects out of the various type of objects in images and merging them with other scenes is manual and day-to-day work for photo editors. Although recently Adobe photoshop released "select subject" tool which automatically selects the foreground object in an image, but still requires fine manual tweaking separately. In this work, we proposed an application utilizing Mask R-CNN (for object detection and mask segmentation) that can extract human instances from multiple images and merge them with a new background. This application does not add any overhead to Mask R-CNN, running at 5 frames per second. It can extract human instances from any number of images or videos from merging them together. We also structured the code to accept videos of different lengths as input and length of the output-video will be equal to the longest input-video. We wanted to create a simple yet effective application that can serve as a base for photo editing and do most time-consuming work automatically, so, editors can focus more on the design part. Other application could be to group people together in a single picture with a new background from different images which could not be physically together. We are showing single-person and multi-person extraction and placement in two different backgrounds. Also, we are showing a video example with single-person extraction.

* 12 pages, 13 figures 
Access Paper or Ask Questions

A Structured Approach to Predicting Image Enhancement Parameters

Apr 05, 2017
Parag S. Chandakkar, Baoxin Li

Social networking on mobile devices has become a commonplace of everyday life. In addition, photo capturing process has become trivial due to the advances in mobile imaging. Hence people capture a lot of photos everyday and they want them to be visually-attractive. This has given rise to automated, one-touch enhancement tools. However, the inability of those tools to provide personalized and content-adaptive enhancement has paved way for machine-learned methods to do the same. The existing typical machine-learned methods heuristically (e.g. kNN-search) predict the enhancement parameters for a new image by relating the image to a set of similar training images. These heuristic methods need constant interaction with the training images which makes the parameter prediction sub-optimal and computationally expensive at test time which is undesired. This paper presents a novel approach to predicting the enhancement parameters given a new image using only its features, without using any training images. We propose to model the interaction between the image features and its corresponding enhancement parameters using the matrix factorization (MF) principles. We also propose a way to integrate the image features in the MF formulation. We show that our approach outperforms heuristic approaches as well as recent approaches in MF and structured prediction on synthetic as well as real-world data of image enhancement.

* WACV 2016 
Access Paper or Ask Questions

Visual Navigation Among Humans with Optimal Control as a Supervisor

Mar 20, 2020
Varun Tolani, Somil Bansal, Aleksandra Faust, Claire Tomlin

Real world navigation requires robots to operate in unfamiliar, dynamic environments, sharing spaces with humans. Navigating around humans is especially difficult because it requires predicting their future motion, which can be quite challenging. We propose a novel framework for navigation around humans which combines learning-based perception with model-based optimal control. Specifically, we train a Convolutional Neural Network (CNN)-based perception module which maps the robot's visual inputs to a waypoint, or next desired state. This waypoint is then input into planning and control modules which convey the robot safely and efficiently to the goal. To train the CNN we contribute a photo-realistic bench-marking dataset for autonomous robot navigation in the presence of humans. The CNN is trained using supervised learning on images rendered from our photo-realistic dataset. The proposed framework learns to anticipate and react to peoples' motion based only on a monocular RGB image, without explicitly predicting future human motion. Our method generalizes well to unseen buildings and humans in both simulation and real world environments. Furthermore, our experiments demonstrate that combining model-based control and learning leads to better and more data-efficient navigational behaviors as compared to a purely learning based approach. Videos describing our approach and experiments are available on the project website.

* Project Website: 
Access Paper or Ask Questions

Efficient Privacy Preserving Viola-Jones Type Object Detection via Random Base Image Representation

Mar 30, 2017
Xin Jin, Peng Yuan, Xiaodong Li, Chenggen Song, Shiming Ge, Geng Zhao, Yingya Chen

A cloud server spent a lot of time, energy and money to train a Viola-Jones type object detector with high accuracy. Clients can upload their photos to the cloud server to find objects. However, the client does not want the leakage of the content of his/her photos. In the meanwhile, the cloud server is also reluctant to leak any parameters of the trained object detectors. 10 years ago, Avidan & Butman introduced Blind Vision, which is a method for securely evaluating a Viola-Jones type object detector. Blind Vision uses standard cryptographic tools and is painfully slow to compute, taking a couple of hours to scan a single image. The purpose of this work is to explore an efficient method that can speed up the process. We propose the Random Base Image (RBI) Representation. The original image is divided into random base images. Only the base images are submitted randomly to the cloud server. Thus, the content of the image can not be leaked. In the meanwhile, a random vector and the secure Millionaire protocol are leveraged to protect the parameters of the trained object detector. The RBI makes the integral-image enable again for the great acceleration. The experimental results reveal that our method can retain the detection accuracy of that of the plain vision algorithm and is significantly faster than the traditional blind vision, with only a very low probability of the information leakage theoretically.

* 6 pages, 3 figures, To appear in the proceedings of the IEEE International Conference on Multimedia and Expo (ICME), Jul 10, 2017 - Jul 14, 2017, Hong Kong, Hong Kong 
Access Paper or Ask Questions

ChineseFoodNet: A large-scale Image Dataset for Chinese Food Recognition

Oct 15, 2017
Xin Chen, Yu Zhu, Hua Zhou, Liang Diao, Dongyan Wang

In this paper, we introduce a new and challenging large-scale food image dataset called "ChineseFoodNet", which aims to automatically recognizing pictured Chinese dishes. Most of the existing food image datasets collected food images either from recipe pictures or selfie. In our dataset, images of each food category of our dataset consists of not only web recipe and menu pictures but photos taken from real dishes, recipe and menu as well. ChineseFoodNet contains over 180,000 food photos of 208 categories, with each category covering a large variations in presentations of same Chinese food. We present our efforts to build this large-scale image dataset, including food category selection, data collection, and data clean and label, in particular how to use machine learning methods to reduce manual labeling work that is an expensive process. We share a detailed benchmark of several state-of-the-art deep convolutional neural networks (CNNs) on ChineseFoodNet. We further propose a novel two-step data fusion approach referred as "TastyNet", which combines prediction results from different CNNs with voting method. Our proposed approach achieves top-1 accuracies of 81.43% on the validation set and 81.55% on the test set, respectively. The latest dataset is public available for research and can be achieved at

* 8 pages, 5 figure, 2 tables 
Access Paper or Ask Questions