Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"photo": models, code, and papers

Deep learning model trained on mobile phone-acquired frozen section images effectively detects basal cell carcinoma

Nov 22, 2020
Junli Cao, B. S., Junyan Wu, M. S., Jing W. Zhang, M. D., Ph. D., Jay J. Ye, M. D., Ph. D., Limin Yu, M. D., M. S

Background: Margin assessment of basal cell carcinoma using the frozen section is a common task of pathology intraoperative consultation. Although frequently straight-forward, the determination of the presence or absence of basal cell carcinoma on the tissue sections can sometimes be challenging. We explore if a deep learning model trained on mobile phone-acquired frozen section images can have adequate performance for future deployment. Materials and Methods: One thousand two hundred and forty-one (1241) images of frozen sections performed for basal cell carcinoma margin status were acquired using mobile phones. The photos were taken at 100x magnification (10x objective). The images were downscaled from a 4032 x 3024 pixel resolution to 576 x 432 pixel resolution. Semantic segmentation algorithm Deeplab V3 with Xception backbone was used for model training. Results: The model uses an image as input and produces a 2-dimensional black and white output of prediction of the same dimension; the areas determined to be basal cell carcinoma were displayed with white color, in a black background. Any output with the number of white pixels exceeding 0.5% of the total number of pixels is deemed positive for basal cell carcinoma. On the test set, the model achieves area under curve of 0.99 for receiver operator curve and 0.97 for precision-recall curve at the pixel level. The accuracy of classification at the slide level is 96%. Conclusions: The deep learning model trained with mobile phone images shows satisfactory performance characteristics, and thus demonstrates the potential for deploying as a mobile phone app to assist in frozen section interpretation in real time.

Access Paper or Ask Questions

Face Morphing Attack Generation & Detection: A Comprehensive Survey

Nov 03, 2020
Sushma Venkatesh, Raghavendra Ramachandra, Kiran Raja, Christoph Busch

The vulnerability of Face Recognition System (FRS) to various kind of attacks (both direct and in-direct attacks) and face morphing attacks has received a great interest from the biometric community. The goal of a morphing attack is to subvert the FRS at Automatic Border Control (ABC) gates by presenting the Electronic Machine Readable Travel Document (eMRTD) or e-passport that is obtained based on the morphed face image. Since the application process for the e-passport in the majority countries requires a passport photo to be presented by the applicant, a malicious actor and the accomplice can generate the morphed face image and to obtain the e-passport. An e-passport with a morphed face images can be used by both the malicious actor and the accomplice to cross the border as the morphed face image can be verified against both of them. This can result in a significant threat as a malicious actor can cross the border without revealing the track of his/her criminal background while the details of accomplice are recorded in the log of the access control system. This survey aims to present a systematic overview of the progress made in the area of face morphing in terms of both morph generation and morph detection. In this paper, we describe and illustrate various aspects of face morphing attacks, including different techniques for generating morphed face images but also the state-of-the-art regarding Morph Attack Detection (MAD) algorithms based on a stringent taxonomy and finally the availability of public databases, which allow to benchmark new MAD algorithms in a reproducible manner. The outcomes of competitions/benchmarking, vulnerability assessments and performance evaluation metrics are also provided in a comprehensive manner. Furthermore, we discuss the open challenges and potential future works that need to be addressed in this evolving field of biometrics.

Access Paper or Ask Questions

A SSIM Guided cGAN Architecture For Clinically Driven Generative Image Synthesis of Multiplexed Spatial Proteomics Channels

May 20, 2022
Jillur Rahman Saurav, Mohammad Sadegh Nasr, Paul Koomey, Michael Robben, Manfred Huber, Jon Weidanz, Bríd Ryan, Eytan Ruppin, Peng Jiang, Jacob M. Luber

Here we present a structural similarity index measure (SSIM) guided conditional Generative Adversarial Network (cGAN) that generatively performs image-to-image (i2i) synthesis to generate photo-accurate protein channels in multiplexed spatial proteomics images. This approach can be utilized to accurately generate missing spatial proteomics channels that were not included during experimental data collection either at the bench or the clinic. Experimental spatial proteomic data from the Human BioMolecular Atlas Program (HuBMAP) was used to generate spatial representations of missing proteins through a U-Net based image synthesis pipeline. HuBMAP channels were hierarchically clustered by the (SSIM) as a heuristic to obtain the minimal set needed to recapitulate the underlying biology represented by the spatial landscape of proteins. We subsequently prove that our SSIM based architecture allows for scaling of generative image synthesis to slides with up to 100 channels, which is better than current state of the art algorithms which are limited to data with 11 channels. We validate these claims by generating a new experimental spatial proteomics data set from human lung adenocarcinoma tissue sections and show that a model trained on HuBMAP can accurately synthesize channels from our new data set. The ability to recapitulate experimental data from sparsely stained multiplexed histological slides containing spatial proteomic will have tremendous impact on medical diagnostics and drug development, and also raises important questions on the medical ethics of utilizing data produced by generative image synthesis in the clinical setting. The algorithm that we present in this paper will allow researchers and clinicians to save time and costs in proteomics based histological staining while also increasing the amount of data that they can generate through their experiments.

Access Paper or Ask Questions

Structure-Preserving Image Super-Resolution

Sep 26, 2021
Cheng Ma, Yongming Rao, Jiwen Lu, Jie Zhou

Structures matter in single image super-resolution (SISR). Benefiting from generative adversarial networks (GANs), recent studies have promoted the development of SISR by recovering photo-realistic images. However, there are still undesired structural distortions in the recovered images. In this paper, we propose a structure-preserving super-resolution (SPSR) method to alleviate the above issue while maintaining the merits of GAN-based methods to generate perceptual-pleasant details. Firstly, we propose SPSR with gradient guidance (SPSR-G) by exploiting gradient maps of images to guide the recovery in two aspects. On the one hand, we restore high-resolution gradient maps by a gradient branch to provide additional structure priors for the SR process. On the other hand, we propose a gradient loss to impose a second-order restriction on the super-resolved images, which helps generative networks concentrate more on geometric structures. Secondly, since the gradient maps are handcrafted and may only be able to capture limited aspects of structural information, we further extend SPSR-G by introducing a learnable neural structure extractor (NSE) to unearth richer local structures and provide stronger supervision for SR. We propose two self-supervised structure learning methods, contrastive prediction and solving jigsaw puzzles, to train the NSEs. Our methods are model-agnostic, which can be potentially used for off-the-shelf SR networks. Experimental results on five benchmark datasets show that the proposed methods outperform state-of-the-art perceptual-driven SR methods under LPIPS, PSNR, and SSIM metrics. Visual results demonstrate the superiority of our methods in restoring structures while generating natural SR images. Code is available at

* Accepted by T-PAMI. Journal version of arXiv:2003.13081 (CVPR 2020) 
Access Paper or Ask Questions

Generating Embroidery Patterns Using Image-to-Image Translation

Mar 05, 2020
Mohammad Akif Beg, Jia Yuan Yu

In many scenarios in computer vision, machine learning, and computer graphics, there is a requirement to learn the mapping from an image of one domain to an image of another domain, called Image-to-image translation. For example, style transfer, object transfiguration, visually altering the appearance of weather conditions in an image, changing the appearance of a day image into a night image or vice versa, photo enhancement, to name a few. In this paper, we propose two machine learning techniques to solve the embroidery image-to-image translation. Our goal is to generate a preview image which looks similar to an embroidered image, from a user-uploaded image. Our techniques are modifications of two existing techniques, neural style transfer, and cycle-consistent generative-adversarial network. Neural style transfer renders the semantic content of an image from one domain in the style of a different image in another domain, whereas a cycle-consistent generative adversarial network learns the mapping from an input image to output image without any paired training data, and also learn a loss function to train this mapping. Furthermore, the techniques we propose are independent of any embroidery attributes, such as elevation of the image, light-source, start, and endpoints of a stitch, type of stitch used, fabric type, etc. Given the user image, our techniques can generate a preview image which looks similar to an embroidered image. We train and test our propose techniques on an embroidery dataset which consist of simple 2D images. To do so, we prepare an unpaired embroidery dataset with more than 8000 user-uploaded images along with embroidered images. Empirical results show that these techniques successfully generate an approximate preview of an embroidered version of a user image, which can help users in decision making.

Access Paper or Ask Questions

Multi-View Stereo with Single-View Semantic Mesh Refinement

Aug 24, 2017
Andrea Romanoni, Marco Ciccone, Francesco Visin, Matteo Matteucci

While 3D reconstruction is a well-established and widely explored research topic, semantic 3D reconstruction has only recently witnessed an increasing share of attention from the Computer Vision community. Semantic annotations allow in fact to enforce strong class-dependent priors, as planarity for ground and walls, which can be exploited to refine the reconstruction often resulting in non-trivial performance improvements. State-of-the art methods propose volumetric approaches to fuse RGB image data with semantic labels; even if successful, they do not scale well and fail to output high resolution meshes. In this paper we propose a novel method to refine both the geometry and the semantic labeling of a given mesh. We refine the mesh geometry by applying a variational method that optimizes a composite energy made of a state-of-the-art pairwise photo-metric term and a single-view term that models the semantic consistency between the labels of the 3D mesh and those of the segmented images. We also update the semantic labeling through a novel Markov Random Field (MRF) formulation that, together with the classical data and smoothness terms, takes into account class-specific priors estimated directly from the annotated mesh. This is in contrast to state-of-the-art methods that are typically based on handcrafted or learned priors. We are the first, jointly with the very recent and seminal work of [M. Blaha et al arXiv:1706.08336, 2017], to propose the use of semantics inside a mesh refinement framework. Differently from [M. Blaha et al arXiv:1706.08336, 2017], which adopts a more classical pairwise comparison to estimate the flow of the mesh, we apply a single-view comparison between the semantically annotated image and the current 3D mesh labels; this improves the robustness in case of noisy segmentations.

* {\pounds}D Reconstruction Meets Semantic, ICCV workshop 
Access Paper or Ask Questions

Comprehensive and Efficient Data Labeling via Adaptive Model Scheduling

Feb 08, 2020
Mu Yuan, Lan Zhang, Xiang-Yang Li, Hui Xiong

Labeling data (e.g., labeling the people, objects, actions and scene in images) comprehensively and efficiently is a widely needed but challenging task. Numerous models were proposed to label various data and many approaches were designed to enhance the ability of deep learning models or accelerate them. Unfortunately, a single machine-learning model is not powerful enough to extract various semantic information from data. Given certain applications, such as image retrieval platforms and photo album management apps, it is often required to execute a collection of models to obtain sufficient labels. With limited computing resources and stringent delay, given a data stream and a collection of applicable resource-hungry deep-learning models, we design a novel approach to adaptively schedule a subset of these models to execute on each data item, aiming to maximize the value of the model output (e.g., the number of high-confidence labels). Achieving this lofty goal is nontrivial since a model's output on any data item is content-dependent and unknown until we execute it. To tackle this, we propose an Adaptive Model Scheduling framework, consisting of 1) a deep reinforcement learning-based approach to predict the value of unexecuted models by mining semantic relationship among diverse models, and 2) two heuristic algorithms to adaptively schedule the model execution order under a deadline or deadline-memory constraints respectively. The proposed framework doesn't require any prior knowledge of the data, which works as a powerful complement to existing model optimization technologies. We conduct extensive evaluations on five diverse image datasets and 30 popular image labeling models to demonstrate the effectiveness of our design: our design could save around 53\% execution time without loss of any valuable labels.

Access Paper or Ask Questions

Assessing Gender Bias in Machine Translation -- A Case Study with Google Translate

Nov 05, 2018
Marcelo O. R. Prates, Pedro H. C. Avelar, Luis Lamb

Recently there has been a growing concern about machine bias, where trained statistical models grow to reflect controversial societal asymmetries, such as gender or racial bias. A significant number of AI tools have recently been suggested to be harmfully biased towards some minority, with reports of racist criminal behavior predictors, Iphone X failing to differentiate between two Asian people and Google photos' mistakenly classifying black people as gorillas. Although a systematic study of such biases can be difficult, we believe that automated translation tools can be exploited through gender neutral languages to yield a window into the phenomenon of gender bias in AI. In this paper, we start with a comprehensive list of job positions from the U.S. Bureau of Labor Statistics (BLS) and used it to build sentences in constructions like "He/She is an Engineer" in 12 different gender neutral languages such as Hungarian, Chinese, Yoruba, and several others. We translate these sentences into English using the Google Translate API, and collect statistics about the frequency of female, male and gender-neutral pronouns in the translated output. We show that GT exhibits a strong tendency towards male defaults, in particular for fields linked to unbalanced gender distribution such as STEM jobs. We ran these statistics against BLS' data for the frequency of female participation in each job position, showing that GT fails to reproduce a real-world distribution of female workers. We provide experimental evidence that even if one does not expect in principle a 50:50 pronominal gender distribution, GT yields male defaults much more frequently than what would be expected from demographic data alone. We are hopeful that this work will ignite a debate about the need to augment current statistical translation tools with debiasing techniques which can already be found in the scientific literature.

* Under submission; 31 pages, 13 figures, 12 tables 
Access Paper or Ask Questions

Generative Semantic Manipulation with Contrasting GAN

Aug 01, 2017
Xiaodan Liang, Hao Zhang, Eric P. Xing

Generative Adversarial Networks (GANs) have recently achieved significant improvement on paired/unpaired image-to-image translation, such as photo$\rightarrow$ sketch and artist painting style transfer. However, existing models can only be capable of transferring the low-level information (e.g. color or texture changes), but fail to edit high-level semantic meanings (e.g., geometric structure or content) of objects. On the other hand, while some researches can synthesize compelling real-world images given a class label or caption, they cannot condition on arbitrary shapes or structures, which largely limits their application scenarios and interpretive capability of model results. In this work, we focus on a more challenging semantic manipulation task, which aims to modify the semantic meaning of an object while preserving its own characteristics (e.g. viewpoints and shapes), such as cow$\rightarrow$sheep, motor$\rightarrow$ bicycle, cat$\rightarrow$dog. To tackle such large semantic changes, we introduce a contrasting GAN (contrast-GAN) with a novel adversarial contrasting objective. Instead of directly making the synthesized samples close to target data as previous GANs did, our adversarial contrasting objective optimizes over the distance comparisons between samples, that is, enforcing the manipulated data be semantically closer to the real data with target category than the input data. Equipped with the new contrasting objective, a novel mask-conditional contrast-GAN architecture is proposed to enable disentangle image background with object semantic changes. Experiments on several semantic manipulation tasks on ImageNet and MSCOCO dataset show considerable performance gain by our contrast-GAN over other conditional GANs. Quantitative results further demonstrate the superiority of our model on generating manipulated results with high visual fidelity and reasonable object semantics.

Access Paper or Ask Questions

Unsupervised Monocular Depth Estimation for Night-time Images using Adversarial Domain Feature Adaptation

Oct 03, 2020
Madhu Vankadari, Sourav Garg, Anima Majumder, Swagat Kumar, Ardhendu Behera

In this paper, we look into the problem of estimating per-pixel depth maps from unconstrained RGB monocular night-time images which is a difficult task that has not been addressed adequately in the literature. The state-of-the-art day-time depth estimation methods fail miserably when tested with night-time images due to a large domain shift between them. The usual photo metric losses used for training these networks may not work for night-time images due to the absence of uniform lighting which is commonly present in day-time images, making it a difficult problem to solve. We propose to solve this problem by posing it as a domain adaptation problem where a network trained with day-time images is adapted to work for night-time images. Specifically, an encoder is trained to generate features from night-time images that are indistinguishable from those obtained from day-time images by using a PatchGAN-based adversarial discriminative learning method. Unlike the existing methods that directly adapt depth prediction (network output), we propose to adapt feature maps obtained from the encoder network so that a pre-trained day-time depth decoder can be directly used for predicting depth from these adapted features. Hence, the resulting method is termed as "Adversarial Domain Feature Adaptation (ADFA)" and its efficacy is demonstrated through experimentation on the challenging Oxford night driving dataset. Also, The modular encoder-decoder architecture for the proposed ADFA method allows us to use the encoder module as a feature extractor which can be used in many other applications. One such application is demonstrated where the features obtained from our adapted encoder network are shown to outperform other state-of-the-art methods in a visual place recognition problem, thereby, further establishing the usefulness and effectiveness of the proposed approach.

* ECCV 2020 
Access Paper or Ask Questions