Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"photo": models, code, and papers

BachGAN: High-Resolution Image Synthesis from Salient Object Layout

Mar 26, 2020
Yandong Li, Yu Cheng, Zhe Gan, Licheng Yu, Liqiang Wang, Jingjing Liu

We propose a new task towards more practical application for image generation - high-quality image synthesis from salient object layout. This new setting allows users to provide the layout of salient objects only (i.e., foreground bounding boxes and categories), and lets the model complete the drawing with an invented background and a matching foreground. Two main challenges spring from this new task: (i) how to generate fine-grained details and realistic textures without segmentation map input; and (ii) how to create a background and weave it seamlessly into standalone objects. To tackle this, we propose Background Hallucination Generative Adversarial Network (BachGAN), which first selects a set of segmentation maps from a large candidate pool via a background retrieval module, then encodes these candidate layouts via a background fusion module to hallucinate a suitable background for the given objects. By generating the hallucinated background representation dynamically, our model can synthesize high-resolution images with both photo-realistic foreground and integral background. Experiments on Cityscapes and ADE20K datasets demonstrate the advantage of BachGAN over existing methods, measured on both visual fidelity of generated images and visual alignment between output images and input layouts.

* Accepted to CVPR 2020 
Access Paper or Ask Questions

Combinatorial Losses through Generalized Gradients of Integer Linear Programs

Oct 18, 2019
Xi Gao, Han Zhang, Aliakbar Panahi, Tom Arodz

When samples have internal structure, we often see a mismatch between the objective optimized during training and the model's goal during inference. For example, in sequence-to-sequence modeling we are interested in high-quality translated sentences, but training typically uses maximum likelihood at the word level. Learning to recognize individual faces from group photos, each captioned with the correct but unordered list of people in it, is another example where a mismatch between training and inference objectives occurs. In both cases, the natural training-time loss would involve a combinatorial problem -- dynamic programming-based global sequence alignment and weighted bipartite graph matching, respectively -- but solutions to combinatorial problems are not differentiable with respect to their input parameters, so surrogate, differentiable losses are used instead. Here, we show how to perform gradient descent over combinatorial optimization algorithms that involve continuous parameters, for example edge weights, and can be efficiently expressed as integer, linear, or mixed-integer linear programs. We demonstrate usefulness of gradient descent over combinatorial optimization in sequence-to-sequence modeling using differentiable encoder-decoder architecture with softmax or Gumbel-softmax, and in weakly supervised learning involving a convolutional, residual feed-forward network for image classification.

Access Paper or Ask Questions

VRKitchen: an Interactive 3D Virtual Environment for Task-oriented Learning

Mar 13, 2019
Xiaofeng Gao, Ran Gong, Tianmin Shu, Xu Xie, Shu Wang, Song-Chun Zhu

One of the main challenges of advancing task-oriented learning such as visual task planning and reinforcement learning is the lack of realistic and standardized environments for training and testing AI agents. Previously, researchers often relied on ad-hoc lab environments. There have been recent advances in virtual systems built with 3D physics engines and photo-realistic rendering for indoor and outdoor environments, but the embodied agents in those systems can only conduct simple interactions with the world (e.g., walking around, moving objects, etc.). Most of the existing systems also do not allow human participation in their simulated environments. In this work, we design and implement a virtual reality (VR) system, VRKitchen, with integrated functions which i) enable embodied agents powered by modern AI methods (e.g., planning, reinforcement learning, etc.) to perform complex tasks involving a wide range of fine-grained object manipulations in a realistic environment, and ii) allow human teachers to perform demonstrations to train agents (i.e., learning from demonstration). We also provide standardized evaluation benchmarks and data collection tools to facilitate a broad use in research on task-oriented learning and beyond.

Access Paper or Ask Questions

Using Human Brain Activity to Guide Machine Learning

Sep 19, 2017
Ruth Fong, Walter Scheirer, David Cox

Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a human ability like adding a caption to a photo, driving a car, or playing a game. While the human brain has long served as a source of inspiration for machine learning, little effort has been made to directly use data collected from working brains as a guide for machine learning algorithms. Here we demonstrate a new paradigm of "neurally-weighted" machine learning, which takes fMRI measurements of human brain activity from subjects viewing images, and infuses these data into the training process of an object recognition learning algorithm to make it more consistent with the human brain. After training, these neurally-weighted classifiers are able to classify images without requiring any additional neural data. We show that our neural-weighting approach can lead to large performance gains when used with traditional machine vision features, as well as to significant improvements with already high-performing convolutional neural network features. The effectiveness of this approach points to a path forward for a new class of hybrid machine learning algorithms which take both inspiration and direct constraints from neuronal data.

* Supplemental material can be downloaded here: 
Access Paper or Ask Questions

Virtual Worlds as Proxy for Multi-Object Tracking Analysis

May 20, 2016
Adrien Gaidon, Qiao Wang, Yohann Cabon, Eleonora Vig

Modern computer vision algorithms typically require expensive data acquisition and accurate manual labeling. In this work, we instead leverage the recent progress in computer graphics to generate fully labeled, dynamic, and photo-realistic proxy virtual worlds. We propose an efficient real-to-virtual world cloning method, and validate our approach by building and publicly releasing a new video dataset, called Virtual KITTI (see, automatically labeled with accurate ground truth for object detection, tracking, scene and instance segmentation, depth, and optical flow. We provide quantitative experimental evidence suggesting that (i) modern deep learning algorithms pre-trained on real data behave similarly in real and virtual worlds, and (ii) pre-training on virtual data improves performance. As the gap between real and virtual worlds is small, virtual worlds enable measuring the impact of various weather and imaging conditions on recognition performance, all other things being equal. We show these factors may affect drastically otherwise high-performing deep models for tracking.

* CVPR 2016, Virtual KITTI dataset download at 
Access Paper or Ask Questions

Virtual Rephotography: Novel View Prediction Error for 3D Reconstruction

Jan 26, 2016
Michael Waechter, Mate Beljan, Simon Fuhrmann, Nils Moehrle, Johannes Kopf, Michael Goesele

The ultimate goal of many image-based modeling systems is to render photo-realistic novel views of a scene without visible artifacts. Existing evaluation metrics and benchmarks focus mainly on the geometric accuracy of the reconstructed model, which is, however, a poor predictor of visual accuracy. Furthermore, using only geometric accuracy by itself does not allow evaluating systems that either lack a geometric scene representation or utilize coarse proxy geometry. Examples include light field or image-based rendering systems. We propose a unified evaluation approach based on novel view prediction error that is able to analyze the visual quality of any method that can render novel views from input images. One of the key advantages of this approach is that it does not require ground truth geometry. This dramatically simplifies the creation of test datasets and benchmarks. It also allows us to evaluate the quality of an unknown scene during the acquisition and reconstruction process, which is useful for acquisition planning. We evaluate our approach on a range of methods including standard geometry-plus-texture pipelines as well as image-based rendering techniques, compare it to existing geometry-based benchmarks, and demonstrate its utility for a range of use cases.

* 10 pages, 12 figures, paper was submitted to ACM Transactions on Graphics for review 
Access Paper or Ask Questions

Clothing Co-Parsing by Joint Image Segmentation and Labeling

Feb 03, 2015
Wei Yang, Ping Luo, Liang Lin

This paper aims at developing an integrated system of clothing co-parsing, in order to jointly parse a set of clothing images (unsegmented but annotated with tags) into semantic configurations. We propose a data-driven framework consisting of two phases of inference. The first phase, referred as "image co-segmentation", iterates to extract consistent regions on images and jointly refines the regions over all images by employing the exemplar-SVM (E-SVM) technique [23]. In the second phase (i.e. "region co-labeling"), we construct a multi-image graphical model by taking the segmented regions as vertices, and incorporate several contexts of clothing configuration (e.g., item location and mutual interactions). The joint label assignment can be solved using the efficient Graph Cuts algorithm. In addition to evaluate our framework on the Fashionista dataset [30], we construct a dataset called CCP consisting of 2098 high-resolution street fashion photos to demonstrate the performance of our system. We achieve 90.29% / 88.23% segmentation accuracy and 65.52% / 63.89% recognition rate on the Fashionista and the CCP datasets, respectively, which are superior compared with state-of-the-art methods.

* Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on , vol., no., pp.3182,3189, 23-28 June 2014 
* 8 pages, 5 figures, CVPR 2014 
Access Paper or Ask Questions

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling

Aug 11, 2021
Jingyun Liang, Andreas Lugmayr, Kai Zhang, Martin Danelljan, Luc Van Gool, Radu Timofte

Normalizing flows have recently demonstrated promising results for low-level vision tasks. For image super-resolution (SR), it learns to predict diverse photo-realistic high-resolution (HR) images from the low-resolution (LR) image rather than learning a deterministic mapping. For image rescaling, it achieves high accuracy by jointly modelling the downscaling and upscaling processes. While existing approaches employ specialized techniques for these two tasks, we set out to unify them in a single formulation. In this paper, we propose the hierarchical conditional flow (HCFlow) as a unified framework for image SR and image rescaling. More specifically, HCFlow learns a bijective mapping between HR and LR image pairs by modelling the distribution of the LR image and the rest high-frequency component simultaneously. In particular, the high-frequency component is conditional on the LR image in a hierarchical manner. To further enhance the performance, other losses such as perceptual loss and GAN loss are combined with the commonly used negative log-likelihood loss in training. Extensive experiments on general image SR, face image SR and image rescaling have demonstrated that the proposed HCFlow achieves state-of-the-art performance in terms of both quantitative metrics and visual quality.

* Accepted by ICCV2021. Code: 
Access Paper or Ask Questions

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction

Aug 11, 2021
Songhua Liu, Tianwei Lin, Dongliang He, Fu Li, Ruifeng Deng, Xin Li, Errui Ding, Hao Wang

Neural painting refers to the procedure of producing a series of strokes for a given image and non-photo-realistically recreating it using neural networks. While reinforcement learning (RL) based agents can generate a stroke sequence step by step for this task, it is not easy to train a stable RL agent. On the other hand, stroke optimization methods search for a set of stroke parameters iteratively in a large search space; such low efficiency significantly limits their prevalence and practicality. Different from previous methods, in this paper, we formulate the task as a set prediction problem and propose a novel Transformer-based framework, dubbed Paint Transformer, to predict the parameters of a stroke set with a feed forward network. This way, our model can generate a set of strokes in parallel and obtain the final painting of size 512 * 512 in near real time. More importantly, since there is no dataset available for training the Paint Transformer, we devise a self-training pipeline such that it can be trained without any off-the-shelf dataset while still achieving excellent generalization capability. Experiments demonstrate that our method achieves better painting performance than previous ones with cheaper training and inference costs. Codes and models are available.

* Accepted by ICCV 2021 (oral). Codes will be released on 
Access Paper or Ask Questions