Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"music generation": models, code, and papers

PIANOTREE VAE: Structured Representation Learning for Polyphonic Music

Aug 17, 2020
Ziyu Wang, Yiyi Zhang, Yixiao Zhang, Junyan Jiang, Ruihan Yang, Junbo Zhao, Gus Xia

The dominant approach for music representation learning involves the deep unsupervised model family variational autoencoder (VAE). However, most, if not all, viable attempts on this problem have largely been limited to monophonic music. Normally composed of richer modality and more complex musical structures, the polyphonic counterpart has yet to be addressed in the context of music representation learning. In this work, we propose the PianoTree VAE, a novel tree-structure extension upon VAE aiming to fit the polyphonic music learning. The experiments prove the validity of the PianoTree VAE via (i)-semantically meaningful latent code for polyphonic segments; (ii)-more satisfiable reconstruction aside of decent geometry learned in the latent space; (iii)-this model's benefits to the variety of the downstream music generation.

* In Proceedings of 21st International Conference on Music Information Retrieval (ISMIR), Montreal, Canada (virtual conference), 2020 
Access Paper or Ask Questions

The Digital Synaptic Neural Substrate: A New Approach to Computational Creativity

Sep 20, 2016
Azlan Iqbal, Matej Guid, Simon Colton, Jana Krivec, Shazril Azman, Boshra Haghighi

We introduce a new artificial intelligence (AI) approach called, the 'Digital Synaptic Neural Substrate' (DSNS). It uses selected attributes from objects in various domains (e.g. chess problems, classical music, renowned artworks) and recombines them in such a way as to generate new attributes that can then, in principle, be used to create novel objects of creative value to humans relating to any one of the source domains. This allows some of the burden of creative content generation to be passed from humans to machines. The approach was tested in the domain of chess problem composition. We used it to automatically compose numerous sets of chess problems based on attributes extracted and recombined from chess problems and tournament games by humans, renowned paintings, computer-evolved abstract art, photographs of people, and classical music tracks. The quality of these generated chess problems was then assessed automatically using an existing and experimentally-validated computational chess aesthetics model. They were also assessed by human experts in the domain. The results suggest that attributes collected and recombined from chess and other domains using the DSNS approach can indeed be used to automatically generate chess problems of reasonably high aesthetic quality. In particular, a low quality chess source (i.e. tournament game sequences between weak players) used in combination with actual photographs of people was able to produce three-move chess problems of comparable quality or better to those generated using a high quality chess source (i.e. published compositions by human experts), and more efficiently as well. Why information from a foreign domain can be integrated and functional in this way remains an open question for now. The DSNS approach is, in principle, scalable and applicable to any domain in which objects have attributes that can be represented using real numbers.

* 39 pages, 5 appendices. Full version: 
Access Paper or Ask Questions

Theme-aware generation model for chinese lyrics

May 23, 2019
Jie Wang, Xinyan Zhao

With rapid development of neural networks, deep-learning has been extended to various natural language generation fields, such as machine translation, dialogue generation and even literature creation. In this paper, we propose a theme-aware language generation model for Chinese music lyrics, which improves the theme-connectivity and coherence of generated paragraphs greatly. A multi-channel sequence-to-sequence (seq2seq) model encodes themes and previous sentences as global and local contextual information. Moreover, attention mechanism is incorporated for sequence decoding, enabling to fuse context into predicted next texts. To prepare appropriate train corpus, LDA (Latent Dirichlet Allocation) is applied for theme extraction. Generated lyrics is grammatically correct and semantically coherent with selected themes, which offers a valuable modelling method in other fields including multi-turn chatbots, long paragraph generation and etc.

Access Paper or Ask Questions

Conditional Sound Generation Using Neural Discrete Time-Frequency Representation Learning

Jul 21, 2021
Xubo Liu, Turab Iqbal, Jinzheng Zhao, Qiushi Huang, Mark D. Plumbley, Wenwu Wang

Deep generative models have recently achieved impressive performance in speech synthesis and music generation. However, compared to the generation of those domain-specific sounds, the generation of general sounds (such as car horn, dog barking, and gun shot) has received less attention, despite their wide potential applications. In our previous work, sounds are generated in the time domain using SampleRNN. However, it is difficult to capture long-range dependencies within sound recordings using this method. In this work, we propose to generate sounds conditioned on sound classes via neural discrete time-frequency representation learning. This offers an advantage in modelling long-range dependencies and retaining local fine-grained structure within a sound clip. We evaluate our proposed approach on the UrbanSound8K dataset, as compared to a SampleRNN baseline, with the performance metrics measuring the quality and diversity of the generated sound samples. Experimental results show that our proposed method offers significantly better performance in diversity and comparable performance in quality, as compared to the baseline method.

* Submitted to MLSP 2021 
Access Paper or Ask Questions

A Predictive Model for Music Based on Learned Interval Representations

Jun 22, 2018
Stefan Lattner, Maarten Grachten, Gerhard Widmer

Connectionist sequence models (e.g., RNNs) applied to musical sequences suffer from two known problems: First, they have strictly "absolute pitch perception". Therefore, they fail to generalize over musical concepts which are commonly perceived in terms of relative distances between pitches (e.g., melodies, scale types, modes, cadences, or chord types). Second, they fall short of capturing the concepts of repetition and musical form. In this paper we introduce the recurrent gated autoencoder (RGAE), a recurrent neural network which learns and operates on interval representations of musical sequences. The relative pitch modeling increases generalization and reduces sparsity in the input data. Furthermore, it can learn sequences of copy-and-shift operations (i.e. chromatically transposed copies of musical fragments)---a promising capability for learning musical repetition structure. We show that the RGAE improves the state of the art for general connectionist sequence models in learning to predict monophonic melodies, and that ensembles of relative and absolute music processing models improve the results appreciably. Furthermore, we show that the relative pitch processing of the RGAE naturally facilitates the learning and the generation of sequences of copy-and-shift operations, wherefore the RGAE greatly outperforms a common absolute pitch recurrent neural network on this task.

* Paper accepted at the 19th International Society for Music Information Retrieval Conference, ISMIR 2018, Paris, France, September 23-27; 8 pages, 3 figures 
Access Paper or Ask Questions

A Generative Model for Raw Audio Using Transformer Architectures

Jul 08, 2021
Prateek Verma, Chris Chafe

This paper proposes a novel way of doing audio synthesis at the waveform level using Transformer architectures. We propose a deep neural network for generating waveforms, similar to wavenet. This is fully probabilistic, auto-regressive, and causal, i.e. each sample generated depends only on the previously observed samples. Our approach outperforms a widely used wavenet architecture by up to 9% on a similar dataset for predicting the next step. Using the attention mechanism, we enable the architecture to learn which audio samples are important for the prediction of the future sample. We show how causal transformer generative models can be used for raw waveform synthesis. We also show that this performance can be improved by another 2% by conditioning samples over a wider context. The flexibility of the current model to synthesize audio from latent representations suggests a large number of potential applications. The novel approach of using generative transformer architectures for raw audio synthesis is, however, still far away from generating any meaningful music, without using latent codes/meta-data to aid the generation process.

* DAFX 2021 
Access Paper or Ask Questions

Calliope -- A Polyphonic Music Transformer

Jul 08, 2021
Andrea Valenti, Stefano Berti, Davide Bacciu

The polyphonic nature of music makes the application of deep learning to music modelling a challenging task. On the other hand, the Transformer architecture seems to be a good fit for this kind of data. In this work, we present Calliope, a novel autoencoder model based on Transformers for the efficient modelling of multi-track sequences of polyphonic music. The experiments show that our model is able to improve the state of the art on musical sequence reconstruction and generation, with remarkably good results especially on long sequences.

* Accepted at ESANN2021 
Access Paper or Ask Questions

MelNet: A Generative Model for Audio in the Frequency Domain

Jun 04, 2019
Sean Vasquez, Mike Lewis

Capturing high-level structure in audio waveforms is challenging because a single second of audio spans tens of thousands of timesteps. While long-range dependencies are difficult to model directly in the time domain, we show that they can be more tractably modelled in two-dimensional time-frequency representations such as spectrograms. By leveraging this representational advantage, in conjunction with a highly expressive probabilistic model and a multiscale generation procedure, we design a model capable of generating high-fidelity audio samples which capture structure at timescales that time-domain models have yet to achieve. We apply our model to a variety of audio generation tasks, including unconditional speech generation, music generation, and text-to-speech synthesis---showing improvements over previous approaches in both density estimates and human judgments.

Access Paper or Ask Questions