Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"facial recognition": models, code, and papers

Facial Expression Recognition in the Wild using Rich Deep Features

Jan 11, 2016
Abubakrelsedik Karali, Ahmad Bassiouny, Motaz El-Saban

Facial Expression Recognition is an active area of research in computer vision with a wide range of applications. Several approaches have been developed to solve this problem for different benchmark datasets. However, Facial Expression Recognition in the wild remains an area where much work is still needed to serve real-world applications. To this end, in this paper we present a novel approach towards facial expression recognition. We fuse rich deep features with domain knowledge through encoding discriminant facial patches. We conduct experiments on two of the most popular benchmark datasets; CK and TFE. Moreover, we present a novel dataset that, unlike its precedents, consists of natural - not acted - expression images. Experimental results show that our approach achieves state-of-the-art results over standard benchmarks and our own dataset

* in International Conference in Image Processing, 2015 

DeepFN: Towards Generalizable Facial Action Unit Recognition with Deep Face Normalization

Mar 03, 2021
Javier Hernandez, Daniel McDuff, Ognjen, Rudovic, Alberto Fung, Mary Czerwinski

Facial action unit recognition has many applications from market research to psychotherapy and from image captioning to entertainment. Despite its recent progress, deployment of these models has been impeded due to their limited generalization to unseen people and demographics. This work conducts an in-depth analysis of performance across several dimensions: individuals(40 subjects), genders (male and female), skin types (darker and lighter), and databases (BP4D and DISFA). To help suppress the variance in data, we use the notion of self-supervised denoising autoencoders to design a method for deep face normalization(DeepFN) that transfers facial expressions of different people onto a common facial template which is then used to train and evaluate facial action recognition models. We show that person-independent models yield significantly lower performance (55% average F1 and accuracy across 40 subjects) than person-dependent models (60.3%), leading to a generalization gap of 5.3%. However, normalizing the data with the newly introduced DeepFN significantly increased the performance of person-independent models (59.6%), effectively reducing the gap. Similarly, we observed generalization gaps when considering gender (2.4%), skin type (5.3%), and dataset (9.4%), which were significantly reduced with the use of DeepFN. These findings represent an important step towards the creation of more generalizable facial action unit recognition systems.


Deep Multi-Facial Patches Aggregation Network For Facial Expression Recognition

Feb 20, 2020
Ahmed Rachid Hazourli, Amine Djeghri, Hanan Salam, Alice Othmani

In this paper, we propose an approach for Facial Expressions Recognition (FER) based on a deep multi-facial patches aggregation network. Deep features are learned from facial patches using deep sub-networks and aggregated within one deep architecture for expression classification . Several problems may affect the performance of deep-learning based FER approaches, in particular, the small size of existing FER datasets which might not be sufficient to train large deep learning networks. Moreover, it is extremely time-consuming to collect and annotate a large number of facial images. To account for this, we propose two data augmentation techniques for facial expression generation to expand FER labeled training datasets. We evaluate the proposed framework on three FER datasets. Results show that the proposed approach achieves state-of-art FER deep learning approaches performance when the model is trained and tested on images from the same dataset. Moreover, the proposed data augmentation techniques improve the expression recognition rate, and thus can be a solution for training deep learning FER models using small datasets. The accuracy degrades significantly when testing for dataset bias.

* arXiv admin note: substantial text overlap with arXiv:1909.10305 

FaceHack: Triggering backdoored facial recognition systems using facial characteristics

Jun 20, 2020
Esha Sarkar, Hadjer Benkraouda, Michail Maniatakos

Recent advances in Machine Learning (ML) have opened up new avenues for its extensive use in real-world applications. Facial recognition, specifically, is used from simple friend suggestions in social-media platforms to critical security applications for biometric validation in automated immigration at airports. Considering these scenarios, security vulnerabilities to such ML algorithms pose serious threats with severe outcomes. Recent work demonstrated that Deep Neural Networks (DNNs), typically used in facial recognition systems, are susceptible to backdoor attacks; in other words,the DNNs turn malicious in the presence of a unique trigger. Adhering to common characteristics for being unnoticeable, an ideal trigger is small, localized, and typically not a part of the main im-age. Therefore, detection mechanisms have focused on detecting these distinct trigger-based outliers statistically or through their reconstruction. In this work, we demonstrate that specific changes to facial characteristics may also be used to trigger malicious behavior in an ML model. The changes in the facial attributes maybe embedded artificially using social-media filters or introduced naturally using movements in facial muscles. By construction, our triggers are large, adaptive to the input, and spread over the entire image. We evaluate the success of the attack and validate that it does not interfere with the performance criteria of the model. We also substantiate the undetectability of our triggers by exhaustively testing them with state-of-the-art defenses.


Generating Dataset For Large-scale 3D Facial Emotion Recognition

Sep 16, 2021
Faizan Farooq Khan, Syed Zulqarnain Gilani

The tremendous development in deep learning has led facial expression recognition (FER) to receive much attention in the past few years. Although 3D FER has an inherent edge over its 2D counterpart, work on 2D images has dominated the field. The main reason for the slow development of 3D FER is the unavailability of large training and large test datasets. Recognition accuracies have already saturated on existing 3D emotion recognition datasets due to their small gallery sizes. Unlike 2D photographs, 3D facial scans are not easy to collect, causing a bottleneck in the development of deep 3D FER networks and datasets. In this work, we propose a method for generating a large dataset of 3D faces with labeled emotions. We also develop a deep convolutional neural network(CNN) for 3D FER trained on 624,000 3D facial scans. The test data comprises 208,000 3D facial scans.


Extended Local Binary Patterns for Efficient and Robust Spontaneous Facial Micro-Expression Recognition

Jul 22, 2019
Chengyu Guo, Jingyun Liang, Geng Zhan, Zhong Liu, Matti Pietikäinen, Li Liu

Facial MicroExpressions (MEs) are spontaneous, involuntary facial movements when a person experiences an emotion but deliberately or unconsciously attempts to conceal his or her genuine emotions. Recently, ME recognition has attracted increasing attention due to its potential applications such as clinical diagnosis, business negotiation, interrogations and security. However, it is expensive to build large scale ME datasets, mainly due to the difficulty of naturally inducing spontaneous MEs. This limits the application of deep learning techniques which require lots of training data. In this paper, we propose a simple, efficient yet robust descriptor called Extended Local Binary Patterns on Three Orthogonal Planes (ELBPTOP) for ME recognition. ELBPTOP consists of three complementary binary descriptors: LBPTOP and two novel ones Radial Difference LBPTOP (RDLBPTOP) and Angular Difference LBPTOP (ADLBPTOP), which explore the local second order information along radial and angular directions contained in ME video sequences. ELBPTOP is a novel ME descriptor inspired by the unique and subtle facial movements. It is computationally efficient and only marginally increases the cost of computing LBPTOP, yet is extremely effective for ME recognition. In addition, by firstly introducing Whitened Principal Component Analysis (WPCA) to ME recognition, we can further obtain more compact and discriminative feature representations, and achieve significantly computational savings. Extensive experimental evaluation on three popular spontaneous ME datasets SMIC, CASMEII and SAMM show that our proposed ELBPTOP approach significantly outperforms previous state of the art on all three evaluated datasets. Our proposed ELBPTOP achieves 73.94% on CASMEII, which is 6.6% higher than state of the art on this dataset. More impressively, ELBPTOP increases recognition accuracy from 44.7% to 63.44% on the SAMM dataset.


From Facial Expression Recognition to Interpersonal Relation Prediction

Nov 06, 2017
Zhanpeng Zhang, Ping Luo, Chen Change Loy, Xiaoou Tang

Interpersonal relation defines the association, e.g., warm, friendliness, and dominance, between two or more people. Motivated by psychological studies, we investigate if such fine-grained and high-level relation traits can be characterized and quantified from face images in the wild. We address this challenging problem by first studying a deep network architecture for robust recognition of facial expressions. Unlike existing models that typically learn from facial expression labels alone, we devise an effective multitask network that is capable of learning from rich auxiliary attributes such as gender, age, and head pose, beyond just facial expression data. While conventional supervised training requires datasets with complete labels (e.g., all samples must be labeled with gender, age, and expression), we show that this requirement can be relaxed via a novel attribute propagation method. The approach further allows us to leverage the inherent correspondences between heterogeneous attribute sources despite the disparate distributions of different datasets. With the network we demonstrate state-of-the-art results on existing facial expression recognition benchmarks. To predict inter-personal relation, we use the expression recognition network as branches for a Siamese model. Extensive experiments show that our model is capable of mining mutual context of faces for accurate fine-grained interpersonal prediction.

* To appear in International Journal of Computer Vision. We release a large expression dataset (over 90,000 web images with manual annotation) and an interpersonal relation dataset. See 

Occlusion-Adaptive Deep Network for Robust Facial Expression Recognition

May 12, 2020
Hui Ding, Peng Zhou, Rama Chellappa

Recognizing the expressions of partially occluded faces is a challenging computer vision problem. Previous expression recognition methods, either overlooked this issue or resolved it using extreme assumptions. Motivated by the fact that the human visual system is adept at ignoring the occlusion and focus on non-occluded facial areas, we propose a landmark-guided attention branch to find and discard corrupted features from occluded regions so that they are not used for recognition. An attention map is first generated to indicate if a specific facial part is occluded and guide our model to attend to non-occluded regions. To further improve robustness, we propose a facial region branch to partition the feature maps into non-overlapping facial blocks and task each block to predict the expression independently. This results in more diverse and discriminative features, enabling the expression recognition system to recover even though the face is partially occluded. Depending on the synergistic effects of the two branches, our occlusion-adaptive deep network significantly outperforms state-of-the-art methods on two challenging in-the-wild benchmark datasets and three real-world occluded expression datasets.


MOON: A Mixed Objective Optimization Network for the Recognition of Facial Attributes

Oct 21, 2016
Ethan Rudd, Manuel Günther, Terrance Boult

Attribute recognition, particularly facial, extracts many labels for each image. While some multi-task vision problems can be decomposed into separate tasks and stages, e.g., training independent models for each task, for a growing set of problems joint optimization across all tasks has been shown to improve performance. We show that for deep convolutional neural network (DCNN) facial attribute extraction, multi-task optimization is better. Unfortunately, it can be difficult to apply joint optimization to DCNNs when training data is imbalanced, and re-balancing multi-label data directly is structurally infeasible, since adding/removing data to balance one label will change the sampling of the other labels. This paper addresses the multi-label imbalance problem by introducing a novel mixed objective optimization network (MOON) with a loss function that mixes multiple task objectives with domain adaptive re-weighting of propagated loss. Experiments demonstrate that not only does MOON advance the state of the art in facial attribute recognition, but it also outperforms independently trained DCNNs using the same data. When using facial attributes for the LFW face recognition task, we show that our balanced (domain adapted) network outperforms the unbalanced trained network.

* Post-print of manuscript accepted to the European Conference on Computer Vision (ECCV) 2016 

Dynamic Facial Expression Recognition under Partial Occlusion with Optical Flow Reconstruction

Dec 24, 2020
Delphine Poux, Benjamin Allaert, Nacim Ihaddadene, Ioan Marius Bilasco, Chaabane Djeraba, Mohammed Bennamoun

Video facial expression recognition is useful for many applications and received much interest lately. Although some solutions give really good results in a controlled environment (no occlusion), recognition in the presence of partial facial occlusion remains a challenging task. To handle occlusions, solutions based on the reconstruction of the occluded part of the face have been proposed. These solutions are mainly based on the texture or the geometry of the face. However, the similarity of the face movement between different persons doing the same expression seems to be a real asset for the reconstruction. In this paper we exploit this asset and propose a new solution based on an auto-encoder with skip connections to reconstruct the occluded part of the face in the optical flow domain. To the best of our knowledge, this is the first proposition to directly reconstruct the movement for facial expression recognition. We validated our approach in the controlled dataset CK+ on which different occlusions were generated. Our experiments show that the proposed method reduce significantly the gap, in terms of recognition accuracy, between occluded and non-occluded situations. We also compare our approach with existing state-of-the-art solutions. In order to lay the basis of a reproducible and fair comparison in the future, we also propose a new experimental protocol that includes occlusion generation and reconstruction evaluation.