Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"facial recognition": models, code, and papers

Attribute-Guided Coupled GAN for Cross-Resolution Face Recognition

Aug 05, 2019
Veeru Talreja, Fariborz Taherkhani, Matthew C Valenti, Nasser M Nasrabadi

In this paper, we propose a novel attribute-guided cross-resolution (low-resolution to high-resolution) face recognition framework that leverages a coupled generative adversarial network (GAN) structure with adversarial training to find the hidden relationship between the low-resolution and high-resolution images in a latent common embedding subspace. The coupled GAN framework consists of two sub-networks, one dedicated to the low-resolution domain and the other dedicated to the high-resolution domain. Each sub-network aims to find a projection that maximizes the pair-wise correlation between the two feature domains in a common embedding subspace. In addition to projecting the images into a common subspace, the coupled network also predicts facial attributes to improve the cross-resolution face recognition. Specifically, our proposed coupled framework exploits facial attributes to further maximize the pair-wise correlation by implicitly matching facial attributes of the low and high-resolution images during the training, which leads to a more discriminative embedding subspace resulting in performance enhancement for cross-resolution face recognition. The efficacy of our approach compared with the state-of-the-art is demonstrated using the LFWA, Celeb-A, SCFace and UCCS datasets.


Micro-Attention for Micro-Expression recognition

Nov 06, 2018
Chongyang Wang, Min Peng, Tao Bi, Tong Chen

Micro-expression, for its high objectivity in emotion detection, has emerged to be a promising modality in affective computing. Recently, deep learning methods have been successfully introduced into micro-expression recognition areas. Whilst the higher recognition accuracy achieved with deep learning methods, substantial challenges in micro-expression recognition remain. Issues with the existence of micro expression in small-local areas on face and limited size of databases still constrain the recognition accuracy of such facial behavior. In this work, to tackle such challenges, we propose novel attention mechanism called micro-attention cooperating with residual network. Micro-attention enables the network to learn to focus on facial area of interest. Moreover, coping with small datasets, a simple yet efficient transfer learning approach is utilized to alleviate the overfitting risk. With an extensive experimental evaluation on two benchmarks (CASMEII, SAMM), we demonstrate the effectiveness of proposed micro-attention and push the boundary of automatic recognition of micro-expression.

* 8 pages, 5 figures, 4 tables 

A NIR-to-VIS face recognition via part adaptive and relation attention module

Feb 01, 2021
Rushuang Xu, MyeongAh Cho, Sangyoun Lee

In the face recognition application scenario, we need to process facial images captured in various conditions, such as at night by near-infrared (NIR) surveillance cameras. The illumination difference between NIR and visible-light (VIS) causes a domain gap between facial images, and the variations in pose and emotion also make facial matching more difficult. Heterogeneous face recognition (HFR) has difficulties in domain discrepancy, and many studies have focused on extracting domain-invariant features, such as facial part relational information. However, when pose variation occurs, the facial component position changes, and a different part relation is extracted. In this paper, we propose a part relation attention module that crops facial parts obtained through a semantic mask and performs relational modeling using each of these representative features. Furthermore, we suggest component adaptive triplet loss function using adaptive weights for each part to reduce the intra-class identity regardless of the domain as well as pose. Finally, our method exhibits a performance improvement in the CASIA NIR-VIS 2.0 and achieves superior result in the BUAA-VisNir with large pose and emotion variations.

* 5 pages 

Infrared face recognition: a comprehensive review of methodologies and databases

Jan 29, 2014
Reza Shoja Ghiass, Ognjen Arandjelovic, Hakim Bendada, Xavier Maldague

Automatic face recognition is an area with immense practical potential which includes a wide range of commercial and law enforcement applications. Hence it is unsurprising that it continues to be one of the most active research areas of computer vision. Even after over three decades of intense research, the state-of-the-art in face recognition continues to improve, benefitting from advances in a range of different research fields such as image processing, pattern recognition, computer graphics, and physiology. Systems based on visible spectrum images, the most researched face recognition modality, have reached a significant level of maturity with some practical success. However, they continue to face challenges in the presence of illumination, pose and expression changes, as well as facial disguises, all of which can significantly decrease recognition accuracy. Amongst various approaches which have been proposed in an attempt to overcome these limitations, the use of infrared (IR) imaging has emerged as a particularly promising research direction. This paper presents a comprehensive and timely review of the literature on this subject. Our key contributions are: (i) a summary of the inherent properties of infrared imaging which makes this modality promising in the context of face recognition, (ii) a systematic review of the most influential approaches, with a focus on emerging common trends as well as key differences between alternative methodologies, (iii) a description of the main databases of infrared facial images available to the researcher, and lastly (iv) a discussion of the most promising avenues for future research.

* Pattern Recognition, 2014. arXiv admin note: substantial text overlap with arXiv:1306.1603 

Intelligent Frame Selection as a Privacy-Friendlier Alternative to Face Recognition

Jan 27, 2021
Mattijs Baert, Sam Leroux, Pieter Simoens

The widespread deployment of surveillance cameras for facial recognition gives rise to many privacy concerns. This study proposes a privacy-friendly alternative to large scale facial recognition. While there are multiple techniques to preserve privacy, our work is based on the minimization principle which implies minimizing the amount of collected personal data. Instead of running facial recognition software on all video data, we propose to automatically extract a high quality snapshot of each detected person without revealing his or her identity. This snapshot is then encrypted and access is only granted after legal authorization. We introduce a novel unsupervised face image quality assessment method which is used to select the high quality snapshots. For this, we train a variational autoencoder on high quality face images from a publicly available dataset and use the reconstruction probability as a metric to estimate the quality of each face crop. We experimentally confirm that the reconstruction probability can be used as biometric quality predictor. Unlike most previous studies, we do not rely on a manually defined face quality metric as everything is learned from data. Our face quality assessment method outperforms supervised, unsupervised and general image quality assessment methods on the task of improving face verification performance by rejecting low quality images. The effectiveness of the whole system is validated qualitatively on still images and videos.

* accepted for AAAI 2021 Workshop on Privacy-Preserving Artificial Intelligence (PPAI-21) 

Action Units Recognition Using Improved Pairwise Deep Architecture

Jul 08, 2021
Junya Saito, Xiaoyu Mi, Akiyoshi Uchida, Sachihiro Youoku, Takahisa Yamamoto, Kentaro Murase, Osafumi Nakayama

Facial Action Units (AUs) represent a set of facial muscular activities and various combinations of AUs can represent a wide range of emotions. AU recognition is often used in many applications, including marketing, healthcare, education, and so forth. Although a lot of studies have developed various methods to improve recognition accuracy, it still remains a major challenge for AU recognition. In the Affective Behavior Analysis in-the-wild (ABAW) 2020 competition, we proposed a new automatic Action Units (AUs) recognition method using a pairwise deep architecture to derive the Pseudo-Intensities of each AU and then convert them into predicted intensities. This year, we introduced a new technique to last year's framework to further reduce AU recognition errors due to temporary face occlusion such as hands on face or large face orientation. We obtained a score of 0.65 in the validation data set for this year's competition.


HEU Emotion: A Large-scale Database for Multi-modal Emotion Recognition in the Wild

Jul 24, 2020
Jing Chen, Chenhui Wang, Kejun Wang, Chaoqun Yin, Cong Zhao, Tao Xu, Xinyi Zhang, Ziqiang Huang, Meichen Liu, Tao Yang

The study of affective computing in the wild setting is underpinned by databases. Existing multimodal emotion databases in the real-world conditions are few and small, with a limited number of subjects and expressed in a single language. To meet this requirement, we collected, annotated, and prepared to release a new natural state video database (called HEU Emotion). HEU Emotion contains a total of 19,004 video clips, which is divided into two parts according to the data source. The first part contains videos downloaded from Tumblr, Google, and Giphy, including 10 emotions and two modalities (facial expression and body posture). The second part includes corpus taken manually from movies, TV series, and variety shows, consisting of 10 emotions and three modalities (facial expression, body posture, and emotional speech). HEU Emotion is by far the most extensive multi-modal emotional database with 9,951 subjects. In order to provide a benchmark for emotion recognition, we used many conventional machine learning and deep learning methods to evaluate HEU Emotion. We proposed a Multi-modal Attention module to fuse multi-modal features adaptively. After multi-modal fusion, the recognition accuracies for the two parts increased by 2.19% and 4.01% respectively over those of single-modal facial expression recognition.


Understanding Cross Domain Presentation Attack Detection for Visible Face Recognition

Nov 03, 2021
Jennifer Hamblin, Kshitij Nikhal, Benjamin S. Riggan

Face signatures, including size, shape, texture, skin tone, eye color, appearance, and scars/marks, are widely used as discriminative, biometric information for access control. Despite recent advancements in facial recognition systems, presentation attacks on facial recognition systems have become increasingly sophisticated. The ability to detect presentation attacks or spoofing attempts is a pressing concern for the integrity, security, and trust of facial recognition systems. Multi-spectral imaging has been previously introduced as a way to improve presentation attack detection by utilizing sensors that are sensitive to different regions of the electromagnetic spectrum (e.g., visible, near infrared, long-wave infrared). Although multi-spectral presentation attack detection systems may be discriminative, the need for additional sensors and computational resources substantially increases complexity and costs. Instead, we propose a method that exploits information from infrared imagery during training to increase the discriminability of visible-based presentation attack detection systems. We introduce (1) a new cross-domain presentation attack detection framework that increases the separability of bonafide and presentation attacks using only visible spectrum imagery, (2) an inverse domain regularization technique for added training stability when optimizing our cross-domain presentation attack detection framework, and (3) a dense domain adaptation subnetwork to transform representations between visible and non-visible domains.