Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"facial recognition": models, code, and papers

A Study on various state of the art of the Art Face Recognition System using Deep Learning Techniques

Nov 19, 2019
Sukhada Chokkadi, Sannidhan M S, Sudeepa K B, Abhir Bhandary

Considering the existence of very large amount of available data repositories and reach to the very advanced system of hardware, systems meant for facial identification ave evolved enormously over the past few decades. Sketch recognition is one of the most important areas that have evolved as an integral component adopted by the agencies of law administration in current trends of forensic science. Matching of derived sketches to photo images of face is also a difficult assignment as the considered sketches are produced upon the verbal explanation depicted by the eye witness of the crime scene and may have scarcity of sensitive elements that exist in the photograph as one can accurately depict due to the natural human error. Substantial amount of the novel research work carried out in this area up late used recognition system through traditional extraction and classification models. But very recently, few researches work focused on using deep learning techniques to take an advantage of learning models for the feature extraction and classification to rule out potential domain challenges. The first part of this review paper basically focuses on deep learning techniques used in face recognition and matching which as improved the accuracy of face recognition technique with training of huge sets of data. This paper also includes a survey on different techniques used to match composite sketches to human images which includes component-based representation approach, automatic composite sketch recognition technique etc.

* International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1590 
Access Paper or Ask Questions

Facial Expression Recognition with Deep Learning

Apr 08, 2020
Amil Khanzada, Charles Bai, Ferhat Turker Celepcikay

One of the most universal ways that people communicate is through facial expressions. In this paper, we take a deep dive, implementing multiple deep learning models for facial expression recognition (FER). Our goals are twofold: we aim not only to maximize accuracy, but also to apply our results to the real-world. By leveraging numerous techniques from recent research, we demonstrate a state-of-the-art 75.8% accuracy on the FER2013 test set, outperforming all existing publications. Additionally, we showcase a mobile web app which runs our FER models on-device in real time.

* 6 pages 
Access Paper or Ask Questions

Recognizing Combinations of Facial Action Units with Different Intensity Using a Mixture of Hidden Markov Models and Neural Network

Apr 04, 2010
Mahmoud Khademi, Mohammad T. Manzuri-Shalmani, Mohammad H. Kiapour, Ali A. Kiaei

Facial Action Coding System consists of 44 action units (AUs) and more than 7000 combinations. Hidden Markov models (HMMs) classifier has been used successfully to recognize facial action units (AUs) and expressions due to its ability to deal with AU dynamics. However, a separate HMM is necessary for each single AU and each AU combination. Since combinations of AU numbering in thousands, a more efficient method will be needed. In this paper an accurate real-time sequence-based system for representation and recognition of facial AUs is presented. Our system has the following characteristics: 1) employing a mixture of HMMs and neural network, we develop a novel accurate classifier, which can deal with AU dynamics, recognize subtle changes, and it is also robust to intensity variations, 2) although we use an HMM for each single AU only, by employing a neural network we can recognize each single and combination AU, and 3) using both geometric and appearance-based features, and applying efficient dimension reduction techniques, our system is robust to illumination changes and it can represent the temporal information involved in formation of the facial expressions. Extensive experiments on Cohn-Kanade database show the superiority of the proposed method, in comparison with other classifiers. Keywords: classifier design and evaluation, data fusion, facial action units (AUs), hidden Markov models (HMMs), neural network (NN).

* LNCS vol. 5997, pp. 304--313, Springer, Heidelberg (Proc. of 9th IAPR Workshop on Multiple Classifier Systems), 2010. 
Access Paper or Ask Questions

Human Mood Detection For Human Computer Interaction

May 10, 2013
Preeti Badar, Urmila Shrawankar

In this paper we propose an easiest approach for facial expression recognition. Here we are using concept of SVM for Expression Classification. Main problem is sub divided in three main modules. First one is Face detection in which we are using skin filter and Face segmentation. We are given more stress on feature Extraction. This method is effective enough for application where fast execution is required. Second, Facial Feature Extraction which is essential part for expression recognition. In this module we used Edge Projection Analysis. Finally extracted features vector is passed towards SVM classifier for Expression Recognition. We are considering six basic Expressions (Anger, Fear, Disgust, Joy, Sadness, and Surprise)

* Pages: 04 Figures: 06 Tables: 01, Proceedings of ICETETS-08, Rajkot, India, 13-14 January 2008 
Access Paper or Ask Questions

Synthesizing Normalized Faces from Facial Identity Features

Oct 17, 2017
Forrester Cole, David Belanger, Dilip Krishnan, Aaron Sarna, Inbar Mosseri, William T. Freeman

We present a method for synthesizing a frontal, neutral-expression image of a person's face given an input face photograph. This is achieved by learning to generate facial landmarks and textures from features extracted from a facial-recognition network. Unlike previous approaches, our encoding feature vector is largely invariant to lighting, pose, and facial expression. Exploiting this invariance, we train our decoder network using only frontal, neutral-expression photographs. Since these photographs are well aligned, we can decompose them into a sparse set of landmark points and aligned texture maps. The decoder then predicts landmarks and textures independently and combines them using a differentiable image warping operation. The resulting images can be used for a number of applications, such as analyzing facial attributes, exposure and white balance adjustment, or creating a 3-D avatar.

Access Paper or Ask Questions

A Unified Framework for Biphasic Facial Age Translation with Noisy-Semantic Guided Generative Adversarial Networks

Sep 15, 2021
Muyi Sun, Jian Wang, Yunfan Liu, Qi Li, Zhenan Sun

Biphasic facial age translation aims at predicting the appearance of the input face at any age. Facial age translation has received considerable research attention in the last decade due to its practical value in cross-age face recognition and various entertainment applications. However, most existing methods model age changes between holistic images, regardless of the human face structure and the age-changing patterns of individual facial components. Consequently, the lack of semantic supervision will cause infidelity of generated faces in detail. To this end, we propose a unified framework for biphasic facial age translation with noisy-semantic guided generative adversarial networks. Structurally, we project the class-aware noisy semantic layouts to soft latent maps for the following injection operation on the individual facial parts. In particular, we introduce two sub-networks, ProjectionNet and ConstraintNet. ProjectionNet introduces the low-level structural semantic information with noise map and produces soft latent maps. ConstraintNet disentangles the high-level spatial features to constrain the soft latent maps, which endows more age-related context into the soft latent maps. Specifically, attention mechanism is employed in ConstraintNet for feature disentanglement. Meanwhile, in order to mine the strongest mapping ability of the network, we embed two types of learning strategies in the training procedure, supervised self-driven generation and unsupervised condition-driven cycle-consistent generation. As a result, extensive experiments conducted on MORPH and CACD datasets demonstrate the prominent ability of our proposed method which achieves state-of-the-art performance.

* Under Review 
Access Paper or Ask Questions

Deep Face Quality Assessment

Nov 11, 2018
Vishal Agarwal

Face image quality is an important factor in facial recognition systems as its verification and recognition accuracy is highly dependent on the quality of image presented. Rejecting low quality images can significantly increase the accuracy of any facial recognition system. In this project, a simple approach is presented to train a deep convolutional neural network to perform end-to-end face image quality assessment. The work is done in 2 stages : First, generation of quality score label and secondly, training a deep convolutional neural network in a supervised manner to predict quality score between 0 and 1. The generation of quality labels is done by comparing the face image with a template of best quality images and then evaluating the normalized score based on the similarity.

* Course project report 
Access Paper or Ask Questions

Estimating sex and age for forensic applications using machine learning based on facial measurements from frontal cephalometric landmarks

Aug 06, 2019
Lucas F. Porto, Laise N. Correia Lima, Ademir Franco, Donald M. Pianto, Carlos Eduardo Machado Palhares, Donald M. Pianto, Flavio de Barros Vidal

Facial analysis permits many investigations some of the most important of which are craniofacial identification, facial recognition, and age and sex estimation. In forensics, photo-anthropometry describes the study of facial growth and allows the identification of patterns in facial skull development by using a group of cephalometric landmarks to estimate anthropological information. In several areas, automation of manual procedures has achieved advantages over and similar measurement confidence as a forensic expert. This manuscript presents an approach using photo-anthropometric indexes, generated from frontal faces cephalometric landmarks, to create an artificial neural network classifier that allows the estimation of anthropological information, in this specific case age and sex. The work is focused on four tasks: i) sex estimation over ages from 5 to 22 years old, evaluating the interference of age on sex estimation; ii) age estimation from photo-anthropometric indexes for four age intervals (1 year, 2 years, 4 years and 5 years); iii) age group estimation for thresholds of over 14 and over 18 years old; and; iv) the provision of a new data set, available for academic purposes only, with a large and complete set of facial photo-anthropometric points marked and checked by forensic experts, measured from over 18,000 faces of individuals from Brazil over the last 4 years. The proposed classifier obtained significant results, using this new data set, for the sex estimation of individuals over 14 years old, achieving accuracy values greater than 0.85 by the F_1 measure. For age estimation, the accuracy results are 0.72 for measure with an age interval of 5 years. For the age group estimation, the measures of accuracy are greater than 0.93 and 0.83 for thresholds of 14 and 18 years, respectively.

* 17 pages, 17 figures 
Access Paper or Ask Questions

Illumination-invariant face recognition from a single image across extreme pose using a dual dimension AAM ensemble in the thermal infrared spectrum

Jun 07, 2013
Reza Shoja Ghiass, Ognjen Arandjelovic, Hakim Bendada, Xavier Maldague

Over the course of the last decade, infrared (IR) and particularly thermal IR imaging based face recognition has emerged as a promising complement to conventional, visible spectrum based approaches which continue to struggle when applied in practice. While inherently insensitive to visible spectrum illumination changes, IR data introduces specific challenges of its own, most notably sensitivity to factors which affect facial heat emission patterns, e.g. emotional state, ambient temperature, and alcohol intake. In addition, facial expression and pose changes are more difficult to correct in IR images because they are less rich in high frequency detail which is an important cue for fitting any deformable model. In this paper we describe a novel method which addresses these major challenges. Specifically, when comparing two thermal IR images of faces, we mutually normalize their poses and facial expressions by using an active appearance model (AAM) to generate synthetic images of the two faces with a neutral facial expression and in the same view (the average of the two input views). This is achieved by piecewise affine warping which follows AAM fitting. A major contribution of our work is the use of an AAM ensemble in which each AAM is specialized to a particular range of poses and a particular region of the thermal IR face space. Combined with the contributions from our previous work which addressed the problem of reliable AAM fitting in the thermal IR spectrum, and the development of a person-specific representation robust to transient changes in the pattern of facial temperature emissions, the proposed ensemble framework accurately matches faces across the full range of yaw from frontal to profile, even in the presence of scale variation (e.g. due to the varying distance of a subject from the camera).

* International Joint Conference on Neural Networks, 2013. arXiv admin note: substantial text overlap with arXiv:1306.1609 
Access Paper or Ask Questions

Time Series Classification using the Hidden-Unit Logistic Model

Jan 19, 2016
Wenjie Pei, Hamdi Dibeklioğlu, David M. J. Tax, Laurens van der Maaten

We present a new model for time series classification, called the hidden-unit logistic model, that uses binary stochastic hidden units to model latent structure in the data. The hidden units are connected in a chain structure that models temporal dependencies in the data. Compared to the prior models for time series classification such as the hidden conditional random field, our model can model very complex decision boundaries because the number of latent states grows exponentially with the number of hidden units. We demonstrate the strong performance of our model in experiments on a variety of (computer vision) tasks, including handwritten character recognition, speech recognition, facial expression, and action recognition. We also present a state-of-the-art system for facial action unit detection based on the hidden-unit logistic model.

* 17 pages, 4 figures, 3 tables 
Access Paper or Ask Questions