Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"facial recognition": models, code, and papers

Context-aware Cascade Attention-based RNN for Video Emotion Recognition

May 30, 2018
Man-Chin Sun, Shih-Huan Hsu, Min-Chun Yang, Jen-Hsien Chien

Emotion recognition can provide crucial information about the user in many applications when building human-computer interaction (HCI) systems. Most of current researches on visual emotion recognition are focusing on exploring facial features. However, context information including surrounding environment and human body can also provide extra clues to recognize emotion more accurately. Inspired by "sequence to sequence model" for neural machine translation, which models input and output sequences by an encoder and a decoder in recurrent neural network (RNN) architecture respectively, a novel architecture, "CACA-RNN", is proposed in this work. The proposed network consists of two RNNs in a cascaded architecture to process both context and facial information to perform video emotion classification. Results of the model were submitted to video emotion recognition sub-challenge in Multimodal Emotion Recognition Challenge (MEC2017). CACA-RNN outperforms the MEC2017 baseline (mAP of 21.7%): it achieved mAP of 45.51% on the testing set in the video only challenge.

  
Access Paper or Ask Questions

Automatic Analysis of Facial Expressions Based on Deep Covariance Trajectories

Oct 25, 2018
Naima Otberdout, Anis Kacem, Mohamed Daoudi, Lahoucine Ballihi, Stefano Berretti

In this paper, we propose a new approach for facial expression recognition. The solution is based on the idea of encoding local and global Deep Convolutional Neural Network (DCNN) features extracted from still images, in compact local and global covariance descriptors. The space geometry of the covariance matrices is that of Symmetric Positive Definite (SPD) matrices. By performing the classification of static facial expressions using a valid Gaussian kernel on the SPD manifold and Support Vector Machine (SVM), we show that the covariance descriptors computed on DCNN features are more effective than the standard classification with fully connected layers and softmax. Besides, we propose a completely new and original solution to model the temporal dynamic of facial expressions as deep trajectories on the SPD manifold. As an extension of the classification pipeline of covariance descriptors, we apply SVM with valid positive definite kernels derived from global alignment for deep covariance trajectories classification. By conducting extensive experiments on the Oulu-CASIA, CK+, and SFEW datasets, we show that both the proposed static and dynamic approaches achieve state-of-the-art performance for facial expression recognition outperforming most recent approaches.

* A preliminary version of this work appeared in "Otberdout N, Kacem A, Daoudi M, Ballihi L, Berretti S. Deep Covariance Descriptors for Facial Expression Recognition, in British Machine Vision Conference 2018, BMVC 2018, Northumbria University, Newcastle, UK, September 3-6, 2018. ; 2018 :159." arXiv admin note: substantial text overlap with arXiv:1805.03869 
  
Access Paper or Ask Questions

Robust Facial Expression Classification Using Shape and Appearance Features

May 15, 2015
S. L. Happy, Aurobinda Routray

Facial expression recognition has many potential applications which has attracted the attention of researchers in the last decade. Feature extraction is one important step in expression analysis which contributes toward fast and accurate expression recognition. This paper represents an approach of combining the shape and appearance features to form a hybrid feature vector. We have extracted Pyramid of Histogram of Gradients (PHOG) as shape descriptors and Local Binary Patterns (LBP) as appearance features. The proposed framework involves a novel approach of extracting hybrid features from active facial patches. The active facial patches are located on the face regions which undergo a major change during different expressions. After detection of facial landmarks, the active patches are localized and hybrid features are calculated from these patches. The use of small parts of face instead of the whole face for extracting features reduces the computational cost and prevents the over-fitting of the features for classification. By using linear discriminant analysis, the dimensionality of the feature is reduced which is further classified by using the support vector machine (SVM). The experimental results on two publicly available databases show promising accuracy in recognizing all expression classes.

* Proceedings of 8th International Conference of Advances in Pattern Recognition, 2015 
  
Access Paper or Ask Questions

Revisiting Few-Shot Learning for Facial Expression Recognition

Dec 05, 2019
Anca-Nicoleta Ciubotaru, Arnout Devos, Behzad Bozorgtabar, Hazim Kemal Ekenel, Jean-Philippe Thiran, Maria Gabrani

Most of the existing deep neural nets on automatic facial expression recognition focus on a set of predefined emotion classes, where the amount of training data has the biggest impact on performance. However, over-parameterised neural networks are not amenable for learning from few samples as they can quickly over-fit. In addition, these approaches do not have such a strong generalisation ability to identify a new category, where the data of each category is too limited and significant variations exist in the expression within the same semantic category. We embrace these challenges and formulate the problem as a low-shot learning, where once the base classifier is deployed, it must rapidly adapt to recognise novel classes using a few samples. In this paper, we revisit and compare existing few-shot learning methods for the low-shot facial expression recognition in terms of their generalisation ability via episode-training. In particular, we extend our analysis on the cross-domain generalisation, where training and test tasks are not drawn from the same distribution. We demonstrate the efficacy of low-shot learning methods through extensive experiments.

  
Access Paper or Ask Questions

Continuous Emotion Recognition via Deep Convolutional Autoencoder and Support Vector Regressor

Jan 31, 2020
Sevegni Odilon Clement Allognon, Alessandro L. Koerich, Alceu de S. Britto Jr

Automatic facial expression recognition is an important research area in the emotion recognition and computer vision. Applications can be found in several domains such as medical treatment, driver fatigue surveillance, sociable robotics, and several other human-computer interaction systems. Therefore, it is crucial that the machine should be able to recognize the emotional state of the user with high accuracy. In recent years, deep neural networks have been used with great success in recognizing emotions. In this paper, we present a new model for continuous emotion recognition based on facial expression recognition by using an unsupervised learning approach based on transfer learning and autoencoders. The proposed approach also includes preprocessing and post-processing techniques which contribute favorably to improving the performance of predicting the concordance correlation coefficient for arousal and valence dimensions. Experimental results for predicting spontaneous and natural emotions on the RECOLA 2016 dataset have shown that the proposed approach based on visual information can achieve CCCs of 0.516 and 0.264 for valence and arousal, respectively.

  
Access Paper or Ask Questions

Facial Feature Embedded CycleGAN for VIS-NIR Translation

Apr 25, 2019
Huijiao Wang, Li Wang, Xulei Yang, Lei Yu, Haijian Zhang

VIS-NIR face recognition remains a challenging task due to the distinction between spectral components of two modalities and insufficient paired training data. Inspired by the CycleGAN, this paper presents a method aiming to translate VIS face images into fake NIR images whose distributions are intended to approximate those of true NIR images, which is achieved by proposing a new facial feature embedded CycleGAN. Firstly, to learn the particular feature of NIR domain while preserving common facial representation between VIS and NIR domains, we employ a general facial feature extractor (FFE) to replace the encoder in the original generator of CycleGAN. For implementing the facial feature extractor, herein the MobileFaceNet is pretrained on a VIS face database, and is able to extract effective features. Secondly, the domain-invariant feature learning is enhanced by considering a new pixel consistency loss. Lastly, we establish a new WHU VIS-NIR database which varies in face rotation and expressions to enrich the training data. Experimental results on the Oulu-CASIA NIR-VIS database and the WHU VIS-NIR database show that the proposed FFE-based CycleGAN (FFE-CycleGAN) outperforms state-of-the-art VIS-NIR face recognition methods and achieves 96.5\% accuracy.

* reference [9] corrected; the organization of co-author Xulei Yang corrected; 
  
Access Paper or Ask Questions

Human Face Recognition using Gabor based Kernel Entropy Component Analysis

Dec 05, 2013
Arindam Kar, Debotosh Bhattacharjee, Dipak Kumar Basu, Mita Nasipuri, Mahantapas Kundu

In this paper, we present a novel Gabor wavelet based Kernel Entropy Component Analysis (KECA) method by integrating the Gabor wavelet transformation (GWT) of facial images with the KECA method for enhanced face recognition performance. Firstly, from the Gabor wavelet transformed images the most important discriminative desirable facial features characterized by spatial frequency, spatial locality and orientation selectivity to cope with the variations due to illumination and facial expression changes were derived. After that KECA, relating to the Renyi entropy is extended to include cosine kernel function. The KECA with the cosine kernels is then applied on the extracted most important discriminating feature vectors of facial images to obtain only those real kernel ECA eigenvectors that are associated with eigenvalues having positive entropy contribution. Finally, these real KECA features are used for image classification using the L1, L2 distance measures; the Mahalanobis distance measure and the cosine similarity measure. The feasibility of the Gabor based KECA method with the cosine kernel has been successfully tested on both frontal and pose-angled face recognition, using datasets from the ORL, FRAV2D and the FERET database.

* October, 2012. International Journal of Computer Vision and Image Processing : IGI Global(USA), 2012. arXiv admin note: substantial text overlap with arXiv:1312.1517, arXiv:1312.1520 
  
Access Paper or Ask Questions

Deep Learning for Domain Adaption: Engagement Recognition

Aug 07, 2018
Omid Mohamad Nezami, Len Hamey, Deborah Richards, Mark Dras

Engagement is a key indicator of the quality of learning experience, and one that plays a major role in developing intelligent educational interfaces. Any such interface requires the ability to recognise the level of engagement in order to respond appropriately; however, there is very little existing data to learn from, and new data is expensive and difficult to acquire. This paper presents a deep learning model to improve engagement recognition from face images captured `in the wild' that overcomes the data sparsity challenge by pre-training on readily available basic facial expression data, before training on specialised engagement data. In the first of two steps, a state-of-the-art facial expression recognition model is trained to provide a rich face representation using deep learning. In the second step, we use the model's weights to initialize our deep learning based model to recognize engagement; we term this the Transfer model. We train the model on our new engagement recognition (ER) dataset with 4627 engaged and disengaged samples. We find that our Transfer architecture outperforms standard deep learning architectures that we apply for the first time to engagement recognition, as well as approaches using HOG features and SVMs. The model achieves a classification accuracy of 72.38%, which is 6.1% better than the best baseline model on the test set of the ER dataset. Using the F1 measure and the area under the ROC curve, our Transfer model achieves 73.90% and 73.74%, exceeding the best baseline model by 3.49% and 5.33% respectively.

  
Access Paper or Ask Questions

Unsupervised Enhancement of Soft-biometric Privacy with Negative Face Recognition

Feb 21, 2020
Philipp Terhörst, Marco Huber, Naser Damer, Florian Kirchbuchner, Arjan Kuijper

Current research on soft-biometrics showed that privacy-sensitive information can be deduced from biometric templates of an individual. Since for many applications, these templates are expected to be used for recognition purposes only, this raises major privacy issues. Previous works focused on supervised privacy-enhancing solutions that require privacy-sensitive information about individuals and limit their application to the suppression of single and pre-defined attributes. Consequently, they do not take into account attributes that are not considered in the training. In this work, we present Negative Face Recognition (NFR), a novel face recognition approach that enhances the soft-biometric privacy on the template-level by representing face templates in a complementary (negative) domain. While ordinary templates characterize facial properties of an individual, negative templates describe facial properties that does not exist for this individual. This suppresses privacy-sensitive information from stored templates. Experiments are conducted on two publicly available datasets captured under controlled and uncontrolled scenarios on three privacy-sensitive attributes. The experiments demonstrate that our proposed approach reaches higher suppression rates than previous work, while maintaining higher recognition performances as well. Unlike previous works, our approach does not require privacy-sensitive labels and offers a more comprehensive privacy-protection not limited to pre-defined attributes.

* Currently under review 
  
Access Paper or Ask Questions
<<
19
20
21
22
23
24
25
26
27
28
29
30
31
>>