Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"facial recognition": models, code, and papers

Disentanglement for Discriminative Visual Recognition

Jun 14, 2020
Xiaofeng Liu

Recent successes of deep learning-based recognition rely on maintaining the content related to the main-task label. However, how to explicitly dispel the noisy signals for better generalization in a controllable manner remains an open issue. For instance, various factors such as identity-specific attributes, pose, illumination and expression affect the appearance of face images. Disentangling the identity-specific factors is potentially beneficial for facial expression recognition (FER). This chapter systematically summarize the detrimental factors as task-relevant/irrelevant semantic variations and unspecified latent variation. In this chapter, these problems are casted as either a deep metric learning problem or an adversarial minimax game in the latent space. For the former choice, a generalized adaptive (N+M)-tuplet clusters loss function together with the identity-aware hard-negative mining and online positive mining scheme can be used for identity-invariant FER. The better FER performance can be achieved by combining the deep metric loss and softmax loss in a unified two fully connected layer branches framework via joint optimization. For the latter solution, it is possible to equipping an end-to-end conditional adversarial network with the ability to decompose an input sample into three complementary parts. The discriminative representation inherits the desired invariance property guided by prior knowledge of the task, which is marginal independent to the task-relevant/irrelevant semantic and latent variations. The framework achieves top performance on a serial of tasks, including lighting, makeup, disguise-tolerant face recognition and facial attributes recognition. This chapter systematically summarize the popular and practical solution for disentanglement to achieve more discriminative visual recognition.

* Manuscript for book "Recognition and perception of images" Willy 
Access Paper or Ask Questions

Thermal Human face recognition based on Haar wavelet transform and series matching technique

Sep 04, 2013
Ayan Seal, Suranjan Ganguly, Debotosh Bhattacharjee, Mita Nasipuri, Dipak kr. Basu

Thermal infrared (IR) images represent the heat patterns emitted from hot object and they do not consider the energies reflected from an object. Objects living or non-living emit different amounts of IR energy according to their body temperature and characteristics. Humans are homoeothermic and hence capable of maintaining constant temperature under different surrounding temperature. Face recognition from thermal (IR) images should focus on changes of temperature on facial blood vessels. These temperature changes can be regarded as texture features of images and wavelet transform is a very good tool to analyze multi-scale and multi-directional texture. Wavelet transform is also used for image dimensionality reduction, by removing redundancies and preserving original features of the image. The sizes of the facial images are normally large. So, the wavelet transform is used before image similarity is measured. Therefore this paper describes an efficient approach of human face recognition based on wavelet transform from thermal IR images. The system consists of three steps. At the very first step, human thermal IR face image is preprocessed and the face region is only cropped from the entire image. Secondly, Haar wavelet is used to extract low frequency band from the cropped face region. Lastly, the image classification between the training images and the test images is done, which is based on low-frequency components. The proposed approach is tested on a number of human thermal infrared face images created at our own laboratory and Terravic Facial IR Database. Experimental results indicated that the thermal infra red face images can be recognized by the proposed system effectively. The maximum success of 95% recognition has been achieved.

* 12 pages. arXiv admin note: substantial text overlap with arXiv:1309.1009 
Access Paper or Ask Questions

Micro-Expression Recognition Based on Attribute Information Embedding and Cross-modal Contrastive Learning

May 29, 2022
Yanxin Song, Jianzong Wang, Tianbo Wu, Zhangcheng Huang, Jing Xiao

Facial micro-expressions recognition has attracted much attention recently. Micro-expressions have the characteristics of short duration and low intensity, and it is difficult to train a high-performance classifier with the limited number of existing micro-expressions. Therefore, recognizing micro-expressions is a challenge task. In this paper, we propose a micro-expression recognition method based on attribute information embedding and cross-modal contrastive learning. We use 3D CNN to extract RGB features and FLOW features of micro-expression sequences and fuse them, and use BERT network to extract text information in Facial Action Coding System. Through cross-modal contrastive loss, we embed attribute information in the visual network, thereby improving the representation ability of micro-expression recognition in the case of limited samples. We conduct extensive experiments in CASME II and MMEW databases, and the accuracy is 77.82% and 71.04%, respectively. The comparative experiments show that this method has better recognition effect than other methods for micro-expression recognition.

* This paper has been accepted by IJCNN2022 
Access Paper or Ask Questions

Occlusion-guided compact template learning for ensemble deep network-based pose-invariant face recognition

Apr 15, 2019
Yuhang Wu, Ioannis A. Kakadiaris

Concatenation of the deep network representations extracted from different facial patches helps to improve face recognition performance. However, the concatenated facial template increases in size and contains redundant information. Previous solutions aim to reduce the dimensionality of the facial template without considering the occlusion pattern of the facial patches. In this paper, we propose an occlusion-guided compact template learning (OGCTL) approach that only uses the information from visible patches to construct the compact template. The compact face representation is not sensitive to the number of patches that are used to construct the facial template and is more suitable for incorporating the information from different view angles for image-set based face recognition. Instead of using occlusion masks in face matching (e.g., DPRFS [38]), the proposed method uses occlusion masks in template construction and achieves significantly better image-set based face verification performance on a challenging database with a template size that is an order-of-magnitude smaller than DPRFS.

* Accepted by International Conference on Biometrics (ICB 2019) as an Oral presentation 
Access Paper or Ask Questions

Independent Sign Language Recognition with 3D Body, Hands, and Face Reconstruction

Nov 24, 2020
Agelos Kratimenos, Georgios Pavlakos, Petros Maragos

Independent Sign Language Recognition is a complex visual recognition problem that combines several challenging tasks of Computer Vision due to the necessity to exploit and fuse information from hand gestures, body features and facial expressions. While many state-of-the-art works have managed to deeply elaborate on these features independently, to the best of our knowledge, no work has adequately combined all three information channels to efficiently recognize Sign Language. In this work, we employ SMPL-X, a contemporary parametric model that enables joint extraction of 3D body shape, face and hands information from a single image. We use this holistic 3D reconstruction for SLR, demonstrating that it leads to higher accuracy than recognition from raw RGB images and their optical flow fed into the state-of-the-art I3D-type network for 3D action recognition and from 2D Openpose skeletons fed into a Recurrent Neural Network. Finally, a set of experiments on the body, face and hand features showed that neglecting any of these, significantly reduces the classification accuracy, proving the importance of jointly modeling body shape, facial expression and hand pose for Sign Language Recognition.

* Submitted to ICASSP 2021 
Access Paper or Ask Questions

Attributes in Multiple Facial Images

May 23, 2018
Xudong Liu, Guodong Guo

Facial attribute recognition is conventionally computed from a single image. In practice, each subject may have multiple face images. Taking the eye size as an example, it should not change, but it may have different estimation in multiple images, which would make a negative impact on face recognition. Thus, how to compute these attributes corresponding to each subject rather than each single image is a profound work. To address this question, we deploy deep training for facial attributes prediction, and we explore the inconsistency issue among the attributes computed from each single image. Then, we develop two approaches to address the inconsistency issue. Experimental results show that the proposed methods can handle facial attribute estimation on either multiple still images or video frames, and can correct the incorrectly annotated labels. The experiments are conducted on two large public databases with annotations of facial attributes.

* Accepted by 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018 Spotlight) 
Access Paper or Ask Questions

Dual-discriminator GAN: A GAN way of profile face recognition

Mar 20, 2020
Xinyu Zhang, Yang Zhao, Hao Zhang

A wealth of angle problems occur when facial recognition is performed: At present, the feature extraction network presents eigenvectors with large differences between the frontal face and profile face recognition of the same person in many cases. For this reason, the state-of-the-art facial recognition network will use multiple samples for the same target to ensure that eigenvector differences caused by angles are ignored during training. However, there is another solution available, which is to generate frontal face images with profile face images before recognition. In this paper, we proposed a method of generating frontal faces with image-to-image profile faces based on Generative Adversarial Network (GAN).

Access Paper or Ask Questions

Robust features for facial action recognition

Jun 11, 2017
Nadav Israel, Lior Wolf, Ran Barzilay, Gal Shoval

Automatic recognition of facial gestures is becoming increasingly important as real world AI agents become a reality. In this paper, we present an automated system that recognizes facial gestures by capturing local changes and encoding the motion into a histogram of frequencies. We evaluate the proposed method by demonstrating its effectiveness on spontaneous face action benchmarks: the FEEDTUM dataset, the Pain dataset and the HMDB51 dataset. The results show that, compared to known methods, the new encoding methods significantly improve the recognition accuracy and the robustness of analysis for a variety of applications.

Access Paper or Ask Questions

Using Deep Autoencoders for Facial Expression Recognition

Jan 25, 2018
Muhammad Usman, Siddique Latif, Junaid Qadir

Feature descriptors involved in image processing are generally manually chosen and high dimensional in nature. Selecting the most important features is a very crucial task for systems like facial expression recognition. This paper investigates the performance of deep autoencoders for feature selection and dimension reduction for facial expression recognition on multiple levels of hidden layers. The features extracted from the stacked autoencoder outperformed when compared to other state-of-the-art feature selection and dimension reduction techniques.

Access Paper or Ask Questions

Masked Face Recognition Challenge: The WebFace260M Track Report

Aug 16, 2021
Zheng Zhu, Guan Huang, Jiankang Deng, Yun Ye, Junjie Huang, Xinze Chen, Jiagang Zhu, Tian Yang, Jia Guo, Jiwen Lu, Dalong Du, Jie Zhou

According to WHO statistics, there are more than 204,617,027 confirmed COVID-19 cases including 4,323,247 deaths worldwide till August 12, 2021. During the coronavirus epidemic, almost everyone wears a facial mask. Traditionally, face recognition approaches process mostly non-occluded faces, which include primary facial features such as the eyes, nose, and mouth. Removing the mask for authentication in airports or laboratories will increase the risk of virus infection, posing a huge challenge to current face recognition systems. Due to the sudden outbreak of the epidemic, there are yet no publicly available real-world masked face recognition (MFR) benchmark. To cope with the above-mentioned issue, we organize the Face Bio-metrics under COVID Workshop and Masked Face Recognition Challenge in ICCV 2021. Enabled by the ultra-large-scale WebFace260M benchmark and the Face Recognition Under Inference Time conStraint (FRUITS) protocol, this challenge (WebFace260M Track) aims to push the frontiers of practical MFR. Since public evaluation sets are mostly saturated or contain noise, a new test set is gathered consisting of elaborated 2,478 celebrities and 60,926 faces. Meanwhile, we collect the world-largest real-world masked test set. In the first phase of WebFace260M Track, 69 teams (total 833 solutions) participate in the challenge and 49 teams exceed the performance of our baseline. There are second phase of the challenge till October 1, 2021 and on-going leaderboard. We will actively update this report in the future.

* The WebFace260M Track of ICCV-21 MFR Challenge is still open in 
Access Paper or Ask Questions