Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"chatbots": models, code, and papers

A Rich Recipe Representation as Plan to Support Expressive Multi Modal Queries on Recipe Content and Preparation Process

Mar 31, 2022
Vishal Pallagani, Priyadharsini Ramamurthy, Vedant Khandelwal, Revathy Venkataramanan, Kausik Lakkaraju, Sathyanarayanan N. Aakur, Biplav Srivastava

Food is not only a basic human necessity but also a key factor driving a society's health and economic well-being. As a result, the cooking domain is a popular use-case to demonstrate decision-support (AI) capabilities in service of benefits like precision health with tools ranging from information retrieval interfaces to task-oriented chatbots. An AI here should understand concepts in the food domain (e.g., recipes, ingredients), be tolerant to failures encountered while cooking (e.g., browning of butter), handle allergy-based substitutions, and work with multiple data modalities (e.g. text and images). However, the recipes today are handled as textual documents which makes it difficult for machines to read, reason and handle ambiguity. This demands a need for better representation of the recipes, overcoming the ambiguity and sparseness that exists in the current textual documents. In this paper, we discuss the construction of a machine-understandable rich recipe representation (R3), in the form of plans, from the recipes available in natural language. R3 is infused with additional knowledge such as information about allergens and images of ingredients, possible failures and tips for each atomic cooking step. To show the benefits of R3, we also present TREAT, a tool for recipe retrieval which uses R3 to perform multi-modal reasoning on the recipe's content (plan objects - ingredients and cooking tools), food preparation process (plan actions and time), and media type (image, text). R3 leads to improved retrieval efficiency and new capabilities that were hither-to not possible in textual representation.


Large Scale Multi-Actor Generative Dialog Modeling

May 13, 2020
Alex Boyd, Raul Puri, Mohammad Shoeybi, Mostofa Patwary, Bryan Catanzaro

Non-goal oriented dialog agents (i.e. chatbots) aim to produce varying and engaging conversations with a user; however, they typically exhibit either inconsistent personality across conversations or the average personality of all users. This paper addresses these issues by controlling an agent's persona upon generation via conditioning on prior conversations of a target actor. In doing so, we are able to utilize more abstract patterns within a person's speech and better emulate them in generated responses. This work introduces the Generative Conversation Control model, an augmented and fine-tuned GPT-2 language model that conditions on past reference conversations to probabilistically model multi-turn conversations in the actor's persona. We introduce an accompanying data collection procedure to obtain 10.3M conversations from 6 months worth of Reddit comments. We demonstrate that scaling model sizes from 117M to 8.3B parameters yields an improvement from 23.14 to 13.14 perplexity on 1.7M held out Reddit conversations. Increasing model scale yielded similar improvements in human evaluations that measure preference of model samples to the held out target distribution in terms of realism (31% increased to 37% preference), style matching (37% to 42%), grammar and content quality (29% to 42%), and conversation coherency (32% to 40%). We find that conditionally modeling past conversations improves perplexity by 0.47 in automatic evaluations. Through human trials we identify positive trends between conditional modeling and style matching and outline steps to further improve persona control.


"Conservatives Overfit, Liberals Underfit": The Social-Psychological Control of Affect and Uncertainty

Aug 08, 2019
Jesse Hoey, Neil J. MacKinnon

The presence of artificial agents in human social networks is growing. From chatbots to robots, human experience in the developed world is moving towards a socio-technical system in which agents can be technological or biological, with increasingly blurred distinctions between. Given that emotion is a key element of human interaction, enabling artificial agents with the ability to reason about affect is a key stepping stone towards a future in which technological agents and humans can work together. This paper presents work on building intelligent computational agents that integrate both emotion and cognition. These agents are grounded in the well-established social-psychological Bayesian Affect Control Theory (BayesAct). The core idea of BayesAct is that humans are motivated in their social interactions by affective alignment: they strive for their social experiences to be coherent at a deep, emotional level with their sense of identity and general world views as constructed through culturally shared symbols. This affective alignment creates cohesive bonds between group members, and is instrumental for collaborations to solidify as relational group commitments. BayesAct agents are motivated in their social interactions by a combination of affective alignment and decision theoretic reasoning, trading the two off as a function of the uncertainty or unpredictability of the situation. This paper provides a high-level view of dual process theories and advances BayesAct as a plausible, computationally tractable model based in social-psychological and sociological theory. We introduce a revised BayesAct model that more deeply integrates social-psychological theorising, and we demonstrate a key component of the model as being sufficient to account for cognitive biases about fairness, dissonance and conformity. We close with ethical and philosophical discussion.


A Comprehensive Survey of Natural Language Generation Advances from the Perspective of Digital Deception

Aug 11, 2022
Keenan Jones, Enes Altuncu, Virginia N. L. Franqueira, Yichao Wang, Shujun Li

In recent years there has been substantial growth in the capabilities of systems designed to generate text that mimics the fluency and coherence of human language. From this, there has been considerable research aimed at examining the potential uses of these natural language generators (NLG) towards a wide number of tasks. The increasing capabilities of powerful text generators to mimic human writing convincingly raises the potential for deception and other forms of dangerous misuse. As these systems improve, and it becomes ever harder to distinguish between human-written and machine-generated text, malicious actors could leverage these powerful NLG systems to a wide variety of ends, including the creation of fake news and misinformation, the generation of fake online product reviews, or via chatbots as means of convincing users to divulge private information. In this paper, we provide an overview of the NLG field via the identification and examination of 119 survey-like papers focused on NLG research. From these identified papers, we outline a proposed high-level taxonomy of the central concepts that constitute NLG, including the methods used to develop generalised NLG systems, the means by which these systems are evaluated, and the popular NLG tasks and subtasks that exist. In turn, we provide an overview and discussion of each of these items with respect to current research and offer an examination of the potential roles of NLG in deception and detection systems to counteract these threats. Moreover, we discuss the broader challenges of NLG, including the risks of bias that are often exhibited by existing text generation systems. This work offers a broad overview of the field of NLG with respect to its potential for misuse, aiming to provide a high-level understanding of this rapidly developing area of research.

* Study completed by end of December 2021; 62 pages 

Identity-Preserving Realistic Talking Face Generation

May 25, 2020
Sanjana Sinha, Sandika Biswas, Brojeshwar Bhowmick

Speech-driven facial animation is useful for a variety of applications such as telepresence, chatbots, etc. The necessary attributes of having a realistic face animation are 1) audio-visual synchronization (2) identity preservation of the target individual (3) plausible mouth movements (4) presence of natural eye blinks. The existing methods mostly address the audio-visual lip synchronization, and few recent works have addressed the synthesis of natural eye blinks for overall video realism. In this paper, we propose a method for identity-preserving realistic facial animation from speech. We first generate person-independent facial landmarks from audio using DeepSpeech features for invariance to different voices, accents, etc. To add realism, we impose eye blinks on facial landmarks using unsupervised learning and retargets the person-independent landmarks to person-specific landmarks to preserve the identity-related facial structure which helps in the generation of plausible mouth shapes of the target identity. Finally, we use LSGAN to generate the facial texture from person-specific facial landmarks, using an attention mechanism that helps to preserve identity-related texture. An extensive comparison of our proposed method with the current state-of-the-art methods demonstrates a significant improvement in terms of lip synchronization accuracy, image reconstruction quality, sharpness, and identity-preservation. A user study also reveals improved realism of our animation results over the state-of-the-art methods. To the best of our knowledge, this is the first work in speech-driven 2D facial animation that simultaneously addresses all the above-mentioned attributes of a realistic speech-driven face animation.

* Accepted in IJCNN 2020 

Complex Sequential Question Answering: Towards Learning to Converse Over Linked Question Answer Pairs with a Knowledge Graph

Oct 04, 2018
Amrita Saha, Vardaan Pahuja, Mitesh M. Khapra, Karthik Sankaranarayanan, Sarath Chandar

While conversing with chatbots, humans typically tend to ask many questions, a significant portion of which can be answered by referring to large-scale knowledge graphs (KG). While Question Answering (QA) and dialog systems have been studied independently, there is a need to study them closely to evaluate such real-world scenarios faced by bots involving both these tasks. Towards this end, we introduce the task of Complex Sequential QA which combines the two tasks of (i) answering factual questions through complex inferencing over a realistic-sized KG of millions of entities, and (ii) learning to converse through a series of coherently linked QA pairs. Through a labor intensive semi-automatic process, involving in-house and crowdsourced workers, we created a dataset containing around 200K dialogs with a total of 1.6M turns. Further, unlike existing large scale QA datasets which contain simple questions that can be answered from a single tuple, the questions in our dialogs require a larger subgraph of the KG. Specifically, our dataset has questions which require logical, quantitative, and comparative reasoning as well as their combinations. This calls for models which can: (i) parse complex natural language questions, (ii) use conversation context to resolve coreferences and ellipsis in utterances, (iii) ask for clarifications for ambiguous queries, and finally (iv) retrieve relevant subgraphs of the KG to answer such questions. However, our experiments with a combination of state of the art dialog and QA models show that they clearly do not achieve the above objectives and are inadequate for dealing with such complex real world settings. We believe that this new dataset coupled with the limitations of existing models as reported in this paper should encourage further research in Complex Sequential QA.

* Accepted in AAAI'18 

End-to-End Knowledge-Routed Relational Dialogue System for Automatic Diagnosis

Mar 18, 2019
Lin Xu, Qixian Zhou, Ke Gong, Xiaodan Liang, Jianheng Tang, Liang Lin

Beyond current conversational chatbots or task-oriented dialogue systems that have attracted increasing attention, we move forward to develop a dialogue system for automatic medical diagnosis that converses with patients to collect additional symptoms beyond their self-reports and automatically makes a diagnosis. Besides the challenges for conversational dialogue systems (e.g. topic transition coherency and question understanding), automatic medical diagnosis further poses more critical requirements for the dialogue rationality in the context of medical knowledge and symptom-disease relations. Existing dialogue systems (Madotto, Wu, and Fung 2018; Wei et al. 2018; Li et al. 2017) mostly rely on data-driven learning and cannot be able to encode extra expert knowledge graph. In this work, we propose an End-to-End Knowledge-routed Relational Dialogue System (KR-DS) that seamlessly incorporates rich medical knowledge graph into the topic transition in dialogue management, and makes it cooperative with natural language understanding and natural language generation. A novel Knowledge-routed Deep Q-network (KR-DQN) is introduced to manage topic transitions, which integrates a relational refinement branch for encoding relations among different symptoms and symptom-disease pairs, and a knowledge-routed graph branch for topic decision-making. Extensive experiments on a public medical dialogue dataset show our KR-DS significantly beats state-of-the-art methods (by more than 8% in diagnosis accuracy). We further show the superiority of our KR-DS on a newly collected medical dialogue system dataset, which is more challenging retaining original self-reports and conversational data between patients and doctors.

* 8 pages, 5 figues, AAAI