Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"chatbots": models, code, and papers

Conversational Agents in Software Engineering: Survey, Taxonomy and Challenges

Jun 21, 2021
Quim Motger, Xavier Franch, Jordi Marco

The use of natural language interfaces in the field of human-computer interaction is undergoing intense study through dedicated scientific and industrial research. The latest contributions in the field, including deep learning approaches like recurrent neural networks, the potential of context-aware strategies and user-centred design approaches, have brought back the attention of the community to software-based dialogue systems, generally known as conversational agents or chatbots. Nonetheless, and given the novelty of the field, a generic, context-independent overview on the current state of research of conversational agents covering all research perspectives involved is missing. Motivated by this context, this paper reports a survey of the current state of research of conversational agents through a systematic literature review of secondary studies. The conducted research is designed to develop an exhaustive perspective through a clear presentation of the aggregated knowledge published by recent literature within a variety of domains, research focuses and contexts. As a result, this research proposes a holistic taxonomy of the different dimensions involved in the conversational agents' field, which is expected to help researchers and to lay the groundwork for future research in the field of natural language interfaces.

* 37 pages, 15 figures, 2 tables, submitted to journal 
  

InstructableCrowd: Creating IF-THEN Rules for Smartphones via Conversations with the Crowd

Sep 12, 2019
Ting-Hao 'Kenneth' Huang, Amos Azaria, Oscar J. Romero, Jeffrey P. Bigham

Natural language interfaces have become a common part of modern digital life. Chatbots utilize text-based conversations to communicate with users; personal assistants on smartphones such as Google Assistant take direct speech commands from their users; and speech-controlled devices such as Amazon Echo use voice as their only input mode. In this paper, we introduce InstructableCrowd, a crowd-powered system that allows users to program their devices via conversation. The user verbally expresses a problem to the system, in which a group of crowd workers collectively respond and program relevant multi-part IF-THEN rules to help the user. The IF-THEN rules generated by InstructableCrowd connect relevant sensor combinations (e.g., location, weather, device acceleration, etc.) to useful effectors (e.g., text messages, device alarms, etc.). Our study showed that non-programmers can use the conversational interface of InstructableCrowd to create IF-THEN rules that have similar quality compared with the rules created manually. InstructableCrowd generally illustrates how users may converse with their devices, not only to trigger simple voice commands, but also to personalize their increasingly powerful and complicated devices.

* Human Computation (2019) 6:1:113-146 
* Published at Human Computation (2019) 6:1:113-146 
  

A Graph Reasoning Network for Multi-turn Response Selection via Customized Pre-training

Jan 15, 2021
Yongkang Liu, Shi Feng, Daling Wang, Kaisong Song, Feiliang Ren, Yifei Zhang

We investigate response selection for multi-turn conversation in retrieval-based chatbots. Existing studies pay more attention to the matching between utterances and responses by calculating the matching score based on learned features, leading to insufficient model reasoning ability. In this paper, we propose a graph-reasoning network (GRN) to address the problem. GRN first conducts pre-training based on ALBERT using next utterance prediction and utterance order prediction tasks specifically devised for response selection. These two customized pre-training tasks can endow our model with the ability of capturing semantical and chronological dependency between utterances. We then fine-tune the model on an integrated network with sequence reasoning and graph reasoning structures. The sequence reasoning module conducts inference based on the highly summarized context vector of utterance-response pairs from the global perspective. The graph reasoning module conducts the reasoning on the utterance-level graph neural network from the local perspective. Experiments on two conversational reasoning datasets show that our model can dramatically outperform the strong baseline methods and can achieve performance which is close to human-level.

* Accepted by AAAI 2021;10 pages,6 figures 
  

Measuring Praise and Criticism: Inference of Semantic Orientation from Association

Sep 19, 2003
Peter D. Turney, Michael L. Littman

The evaluative character of a word is called its semantic orientation. Positive semantic orientation indicates praise (e.g., "honest", "intrepid") and negative semantic orientation indicates criticism (e.g., "disturbing", "superfluous"). Semantic orientation varies in both direction (positive or negative) and degree (mild to strong). An automated system for measuring semantic orientation would have application in text classification, text filtering, tracking opinions in online discussions, analysis of survey responses, and automated chat systems (chatbots). This paper introduces a method for inferring the semantic orientation of a word from its statistical association with a set of positive and negative paradigm words. Two instances of this approach are evaluated, based on two different statistical measures of word association: pointwise mutual information (PMI) and latent semantic analysis (LSA). The method is experimentally tested with 3,596 words (including adjectives, adverbs, nouns, and verbs) that have been manually labeled positive (1,614 words) and negative (1,982 words). The method attains an accuracy of 82.8% on the full test set, but the accuracy rises above 95% when the algorithm is allowed to abstain from classifying mild words.

* ACM Transactions on Information Systems (TOIS), (2003), 21 (4), 315-346 
* 37 pages, related work available at http://www.cs.rutgers.edu/~mlittman/ and http://purl.org/peter.turney/ 
  

Question Answering for Complex Electronic Health Records Database using Unified Encoder-Decoder Architecture

Nov 14, 2021
Seongsu Bae, Daeyoung Kim, Jiho Kim, Edward Choi

An intelligent machine that can answer human questions based on electronic health records (EHR-QA) has a great practical value, such as supporting clinical decisions, managing hospital administration, and medical chatbots. Previous table-based QA studies focusing on translating natural questions into table queries (NLQ2SQL), however, suffer from the unique nature of EHR data due to complex and specialized medical terminology, hence increased decoding difficulty. In this paper, we design UniQA, a unified encoder-decoder architecture for EHR-QA where natural language questions are converted to queries such as SQL or SPARQL. We also propose input masking (IM), a simple and effective method to cope with complex medical terms and various typos and better learn the SQL/SPARQL syntax. Combining the unified architecture with an effective auxiliary training objective, UniQA demonstrated a significant performance improvement against the previous state-of-the-art model for MIMICSQL* (14.2% gain), the most complex NLQ2SQL dataset in the EHR domain, and its typo-ridden versions (approximately 28.8% gain). In addition, we confirmed consistent results for the graph-based EHR-QA dataset, MIMICSPARQL*.

* Proc. of Machine Learning for Health (ML4H) 2021 (Oral Spotlight) 
  

Adding Chit-Chats to Enhance Task-Oriented Dialogues

Oct 24, 2020
Kai Sun, Seungwhan Moon, Paul Crook, Stephen Roller, Becka Silvert, Bing Liu, Zhiguang Wang, Honglei Liu, Eunjoon Cho, Claire Cardie

The existing dialogue corpora and models are typically designed under two disjoint motives: while task-oriented systems focus on achieving functional goals (e.g., booking hotels), open-domain chatbots aim at making socially engaging conversations. In this work, we propose to integrate both types of systems by Adding Chit-Chats to ENhance Task-ORiented dialogues (ACCENTOR), with the goal of making virtual assistant conversations more engaging and interactive. Specifically, we propose a flexible approach for generating diverse chit-chat responses to augment task-oriented dialogues with minimal annotation effort. We then present our new chit-chat annotations to 23.8K dialogues from the popular task-oriented datasets (Schema-Guided Dialogue and MultiWOZ 2.1) and demonstrate their advantage over the originals via human evaluation. Lastly, we propose three new models for ACCENTOR explicitly trained to predict user goals and to generate contextually relevant chit-chat responses. Automatic and human evaluations show that, compared with the state-of-the-art task-oriented baseline, our models can code-switch between task and chit-chat to be more engaging, interesting, knowledgeable, and humanlike, while maintaining competitive task performance.

  

Joint Reasoning for Multi-Faceted Commonsense Knowledge

Jan 13, 2020
Yohan Chalier, Simon Razniewski, Gerhard Weikum

Commonsense knowledge (CSK) supports a variety of AI applications, from visual understanding to chatbots. Prior works on acquiring CSK, such as ConceptNet, have compiled statements that associate concepts, like everyday objects or activities, with properties that hold for most or some instances of the concept. Each concept is treated in isolation from other concepts, and the only quantitative measure (or ranking) of properties is a confidence score that the statement is valid. This paper aims to overcome these limitations by introducing a multi-faceted model of CSK statements and methods for joint reasoning over sets of inter-related statements. Our model captures four different dimensions of CSK statements: plausibility, typicality, remarkability and salience, with scoring and ranking along each dimension. For example, hyenas drinking water is typical but not salient, whereas hyenas eating carcasses is salient. For reasoning and ranking, we develop a method with soft constraints, to couple the inference over concepts that are related in in a taxonomic hierarchy. The reasoning is cast into an integer linear programming (ILP), and we leverage the theory of reduction costs of a relaxed LP to compute informative rankings. This methodology is applied to several large CSK collections. Our evaluation shows that we can consolidate these inputs into much cleaner and more expressive knowledge. Results are available at https://dice.mpi-inf.mpg.de.

* 11 pages 
  

A Semantic Web Framework for Automated Smart Assistants: COVID-19 Case Study

Jul 01, 2020
Yusuf Sermet, Ibrahim Demir

COVID-19 pandemic elucidated that knowledge systems will be instrumental in cases where accurate information needs to be communicated to a substantial group of people with different backgrounds and technological resources. However, several challenges and obstacles hold back the wide adoption of virtual assistants by public health departments and organizations. This paper presents the Instant Expert, an open-source semantic web framework to build and integrate voice-enabled smart assistants (i.e. chatbots) for any web platform regardless of the underlying domain and technology. The component allows non-technical domain experts to effortlessly incorporate an operational assistant with voice recognition capability into their websites. Instant Expert is capable of automatically parsing, processing, and modeling Frequently Asked Questions pages as an information resource as well as communicating with an external knowledge engine for ontology-powered inference and dynamic data utilization. The presented framework utilizes advanced web technologies to ensure reusability and reliability, and an inference engine for natural language understanding powered by deep learning and heuristic algorithms. A use case for creating an informatory assistant for COVID-19 based on the Centers for Disease Control and Prevention (CDC) data is presented to demonstrate the framework's usage and benefits.

* 11 pages, 6 figures 
  

A Comparison of LSTM and BERT for Small Corpus

Sep 11, 2020
Aysu Ezen-Can

Recent advancements in the NLP field showed that transfer learning helps with achieving state-of-the-art results for new tasks by tuning pre-trained models instead of starting from scratch. Transformers have made a significant improvement in creating new state-of-the-art results for many NLP tasks including but not limited to text classification, text generation, and sequence labeling. Most of these success stories were based on large datasets. In this paper we focus on a real-life scenario that scientists in academia and industry face frequently: given a small dataset, can we use a large pre-trained model like BERT and get better results than simple models? To answer this question, we use a small dataset for intent classification collected for building chatbots and compare the performance of a simple bidirectional LSTM model with a pre-trained BERT model. Our experimental results show that bidirectional LSTM models can achieve significantly higher results than a BERT model for a small dataset and these simple models get trained in much less time than tuning the pre-trained counterparts. We conclude that the performance of a model is dependent on the task and the data, and therefore before making a model choice, these factors should be taken into consideration instead of directly choosing the most popular model.

  
<<
17
18
19
20
21
22
23
24
25
26
27
28
>>