Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"chatbots": models, code, and papers

Advanced Semantics for Commonsense Knowledge Extraction

Nov 02, 2020
Tuan-Phong Nguyen, Simon Razniewski, Gerhard Weikum

Commonsense knowledge (CSK) about concepts and their properties is useful for AI applications such as robust chatbots. Prior works like ConceptNet, TupleKB and others compiled large CSK collections, but are restricted in their expressiveness to subject-predicate-object (SPO) triples with simple concepts for S and monolithic strings for P and O. Also, these projects have either prioritized precision or recall, but hardly reconcile these complementary goals. This paper presents a methodology, called Ascent, to automatically build a large-scale knowledge base (KB) of CSK assertions, with advanced expressiveness and both better precision and recall than prior works. Ascent goes beyond triples by capturing composite concepts with subgroups and aspects, and by refining assertions with semantic facets. The latter are important to express temporal and spatial validity of assertions and further qualifiers. Ascent combines open information extraction with judicious cleaning using language models. Intrinsic evaluation shows the superior size and quality of the Ascent KB, and an extrinsic evaluation for QA-support tasks underlines the benefits of Ascent.

* 12 pages 
  

Detecting Text Formality: A Study of Text Classification Approaches

Apr 19, 2022
Daryna Dementieva, Ivan Trifinov, Andrey Likhachev, Alexander Panchenko

Formality is an important characteristic of text documents. The automatic detection of the formality level of a text is potentially beneficial for various natural language processing tasks, such as retrieval of texts with a desired formality level, integration in language learning and document editing platforms, or evaluating the desired conversation tone by chatbots. Recently two large-scale datasets were introduced for multiple languages featuring formality annotation. However, they were primarily used for the training of style transfer models. However, detection text formality on its own may also be a useful application. This work proposes the first systematic study of formality detection methods based on current (and more classic) machine learning methods and delivers the best-performing models for public usage. We conducted three types of experiments -- monolingual, multilingual, and cross-lingual. The study shows the overcome of BiLSTM-based models over transformer-based ones for the formality classification task. We release formality detection models for several languages yielding state of the art results and possessing tested cross-lingual capabilities.

  

Improving Bot Response Contradiction Detection via Utterance Rewriting

Jul 25, 2022
Di Jin, Sijia Liu, Yang Liu, Dilek Hakkani-Tur

Though chatbots based on large neural models can often produce fluent responses in open domain conversations, one salient error type is contradiction or inconsistency with the preceding conversation turns. Previous work has treated contradiction detection in bot responses as a task similar to natural language inference, e.g., detect the contradiction between a pair of bot utterances. However, utterances in conversations may contain co-references or ellipsis, and using these utterances as is may not always be sufficient for identifying contradictions. This work aims to improve the contradiction detection via rewriting all bot utterances to restore antecedents and ellipsis. We curated a new dataset for utterance rewriting and built a rewriting model on it. We empirically demonstrate that this model can produce satisfactory rewrites to make bot utterances more complete. Furthermore, using rewritten utterances improves contradiction detection performance significantly, e.g., the AUPR and joint accuracy scores (detecting contradiction along with evidence) increase by 6.5% and 4.5% (absolute increase), respectively.

* Accepted by SIGDial 2022 
  

Semantic Parsing to Manipulate Relational Database For a Management System

Feb 18, 2021
Muhammad Hamzah Mushtaq

Chatbots and AI assistants have claimed their importance in today life. The main reason behind adopting this technology is to connect with the user, understand their requirements, and fulfill them. This has been achieved but at the cost of heavy training data and complex learning models. This work is carried out proposes a simple algorithm, a model which can be implemented in different fields each with its own work scope. The proposed model converts human language text to computer-understandable SQL queries. The model requires data only related to the specific field, saving data space. This model performs linear computation hence solving the computational complexity. This work also defines the stages where a new methodology is implemented and what previous method was adopted to fulfill the requirement at that stage. Two datasets available online will be used in this work, the ATIS dataset, and WikiSQL. This work compares the computation time among the 2 datasets and also compares the accuracy of both. This paper works over basic Natural language processing tasks like semantic parsing, NER, parts of speech and tends to achieve results through these simple methods.

* 5 pages. Figures, methodology and comparisons included 
  

A Generate-Validate Approach to Answering Questions about Qualitative Relationships

Aug 09, 2019
Arindam Mitra, Chitta Baral, Aurgho Bhattacharjee, Ishan Shrivastava

Qualitative relationships describe how increasing or decreasing one property (e.g. altitude) affects another (e.g. temperature). They are an important aspect of natural language question answering and are crucial for building chatbots or voice agents where one may enquire about qualitative relationships. Recently a dataset about question answering involving qualitative relationships has been proposed, and a few approaches to answer such questions have been explored, in the heart of which lies a semantic parser that converts the natural language input to a suitable logical form. A problem with existing semantic parsers is that they try to directly convert the input sentences to a logical form. Since the output language varies with each application, it forces the semantic parser to learn almost everything from scratch. In this paper, we show that instead of using a semantic parser to produce the logical form, if we apply the generate-validate framework i.e. generate a natural language description of the logical form and validate if the natural language description is followed from the input text, we get a better scope for transfer learning and our method outperforms the state-of-the-art by a large margin of 7.93%.

  

Topic Aware Neural Response Generation

Sep 19, 2016
Chen Xing, Wei Wu, Yu Wu, Jie Liu, Yalou Huang, Ming Zhou, Wei-Ying Ma

We consider incorporating topic information into the sequence-to-sequence framework to generate informative and interesting responses for chatbots. To this end, we propose a topic aware sequence-to-sequence (TA-Seq2Seq) model. The model utilizes topics to simulate prior knowledge of human that guides them to form informative and interesting responses in conversation, and leverages the topic information in generation by a joint attention mechanism and a biased generation probability. The joint attention mechanism summarizes the hidden vectors of an input message as context vectors by message attention, synthesizes topic vectors by topic attention from the topic words of the message obtained from a pre-trained LDA model, and let these vectors jointly affect the generation of words in decoding. To increase the possibility of topic words appearing in responses, the model modifies the generation probability of topic words by adding an extra probability item to bias the overall distribution. Empirical study on both automatic evaluation metrics and human annotations shows that TA-Seq2Seq can generate more informative and interesting responses, and significantly outperform the-state-of-the-art response generation models.

  

Understanding Natural Language in Context

May 25, 2022
Avichai Levy, Erez Karpas

Recent years have seen an increasing number of applications that have a natural language interface, either in the form of chatbots or via personal assistants such as Alexa (Amazon), Google Assistant, Siri (Apple), and Cortana (Microsoft). To use these applications, a basic dialog between the robot and the human is required. While this kind of dialog exists today mainly within "static" robots that do not make any movement in the household space, the challenge of reasoning about the information conveyed by the environment increases significantly when dealing with robots that can move and manipulate objects in our home environment. In this paper, we focus on cognitive robots, which have some knowledge-based models of the world and operate by reasoning and planning with this model. Thus, when the robot and the human communicate, there is already some formalism they can use - the robot's knowledge representation formalism. Our goal in this research is to translate natural language utterances into this robot's formalism, allowing much more complicated household tasks to be completed. We do so by combining off-the-shelf SOTA language models, planning tools, and the robot's knowledge-base for better communication. In addition, we analyze different directive types and illustrate the contribution of the world's context to the translation process.

  

MDD-Eval: Self-Training on Augmented Data for Multi-Domain Dialogue Evaluation

Dec 14, 2021
Chen Zhang, Luis Fernando D'Haro, Thomas Friedrichs, Haizhou Li

Chatbots are designed to carry out human-like conversations across different domains, such as general chit-chat, knowledge exchange, and persona-grounded conversations. To measure the quality of such conversational agents, a dialogue evaluator is expected to conduct assessment across domains as well. However, most of the state-of-the-art automatic dialogue evaluation metrics (ADMs) are not designed for multi-domain evaluation. We are motivated to design a general and robust framework, MDD-Eval, to address the problem. Specifically, we first train a teacher evaluator with human-annotated data to acquire a rating skill to tell good dialogue responses from bad ones in a particular domain and then, adopt a self-training strategy to train a new evaluator with teacher-annotated multi-domain data, that helps the new evaluator to generalize across multiple domains. MDD-Eval is extensively assessed on six dialogue evaluation benchmarks. Empirical results show that the MDD-Eval framework achieves a strong performance with an absolute improvement of 7% over the state-of-the-art ADMs in terms of mean Spearman correlation scores across all the evaluation benchmarks.

* Accepted to AAAI2022 (10 pages, 3 figures, Preprint version) 
  

Biomedical Question Answering: A Comprehensive Review

Feb 10, 2021
Qiao Jin, Zheng Yuan, Guangzhi Xiong, Qianlan Yu, Chuanqi Tan, Mosha Chen, Songfang Huang, Xiaozhong Liu, Sheng Yu

Question Answering (QA) is a benchmark Natural Language Processing (NLP) task where models predict the answer for a given question using related documents, images, knowledge bases and question-answer pairs. Automatic QA has been successfully applied in various domains like search engines and chatbots. However, for specific domains like biomedicine, QA systems are still rarely used in real-life settings. Biomedical QA (BQA), as an emerging QA task, enables innovative applications to effectively perceive, access and understand complex biomedical knowledge. In this work, we provide a critical review of recent efforts in BQA. We comprehensively investigate prior BQA approaches, which are classified into 6 major methodologies (open-domain, knowledge base, information retrieval, machine reading comprehension, question entailment and visual QA), 4 topics of contents (scientific, clinical, consumer health and examination) and 5 types of formats (yes/no, extraction, generation, multi-choice and retrieval). In the end, we highlight several key challenges of BQA and explore potential directions for future works.

* Draft 
  

Text Style Transfer for Bias Mitigation using Masked Language Modeling

Jan 21, 2022
Ewoenam Kwaku Tokpo, Toon Calders

It is well known that textual data on the internet and other digital platforms contain significant levels of bias and stereotypes. Although many such texts contain stereotypes and biases that inherently exist in natural language for reasons that are not necessarily malicious, there are crucial reasons to mitigate these biases. For one, these texts are being used as training corpus to train language models for salient applications like cv-screening, search engines, and chatbots; such applications are turning out to produce discriminatory results. Also, several research findings have concluded that biased texts have significant effects on the target demographic groups. For instance, masculine-worded job advertisements tend to be less appealing to female applicants. In this paper, we present a text style transfer model that can be used to automatically debias textual data. Our style transfer model improves on the limitations of many existing style transfer techniques such as loss of content information. Our model solves such issues by combining latent content encoding with explicit keyword replacement. We will show that this technique produces better content preservation whilst maintaining good style transfer accuracy.

* 9 pages, 3 figures, 5 tables 
  
<<
16
17
18
19
20
21
22
23
24
25
26
27
28
>>