Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"cancer detection": models, code, and papers

Skincure: An Innovative Smart Phone-Based Application To Assist In Melanoma Early Detection And Prevention

Jan 06, 2015
Omar Abuzaghleh, Miad Faezipour, Buket D. Barkana

Melanoma spreads through metastasis, and therefore it has been proven to be very fatal. Statistical evidence has revealed that the majority of deaths resulting from skin cancer are as a result of melanoma. Further investigations have shown that the survival rates in patients depend on the stage of the infection; early detection and intervention of melanoma implicates higher chances of cure. Clinical diagnosis and prognosis of melanoma is challenging since the processes are prone to misdiagnosis and inaccuracies due to doctors subjectivity. This paper proposes an innovative and fully functional smart-phone based application to assist in melanoma early detection and prevention. The application has two major components; the first component is a real-time alert to help users prevent skin burn caused by sunlight; a novel equation to compute the time for skin to burn is thereby introduced. The second component is an automated image analysis module which contains image acquisition, hair detection and exclusion, lesion segmentation, feature extraction, and classification. The proposed system exploits PH2 Dermoscopy image database from Pedro Hispano Hospital for development and testing purposes. The image database contains a total of 200 dermoscopy images of lesions, including normal, atypical, and melanoma cases. The experimental results show that the proposed system is efficient, achieving classification of the normal, atypical and melanoma images with accuracy of 96.3%, 95.7% and 97.5%, respectively.

* appears in Signal & Image Processing : An International Journal (SIPIJ) Vol.5, No.6, December 2014 

SFCN-OPI: Detection and Fine-grained Classification of Nuclei Using Sibling FCN with Objectness Prior Interaction

Dec 22, 2017
Yanning Zhou, Qi Dou, Hao Chen, Jing Qin, Pheng-Ann Heng

Cell nuclei detection and fine-grained classification have been fundamental yet challenging problems in histopathology image analysis. Due to the nuclei tiny size, significant inter-/intra-class variances, as well as the inferior image quality, previous automated methods would easily suffer from limited accuracy and robustness. In the meanwhile, existing approaches usually deal with these two tasks independently, which would neglect the close relatedness of them. In this paper, we present a novel method of sibling fully convolutional network with prior objectness interaction (called SFCN-OPI) to tackle the two tasks simultaneously and interactively using a unified end-to-end framework. Specifically, the sibling FCN branches share features in earlier layers while holding respective higher layers for specific tasks. More importantly, the detection branch outputs the objectness prior which dynamically interacts with the fine-grained classification sibling branch during the training and testing processes. With this mechanism, the fine-grained classification successfully focuses on regions with high confidence of nuclei existence and outputs the conditional probability, which in turn benefits the detection through back propagation. Extensive experiments on colon cancer histology images have validated the effectiveness of our proposed SFCN-OPI and our method has outperformed the state-of-the-art methods by a large margin.

* Accepted at AAAI 2018 

Image Synthesis with Disentangled Attributes for Chest X-Ray Nodule Augmentation and Detection

Jul 19, 2022
Zhenrong Shen, Xi Ouyang, Bin Xiao, Jie-Zhi Cheng, Qian Wang, Dinggang Shen

Lung nodule detection in chest X-ray (CXR) images is common to early screening of lung cancers. Deep-learning-based Computer-Assisted Diagnosis (CAD) systems can support radiologists for nodule screening in CXR. However, it requires large-scale and diverse medical data with high-quality annotations to train such robust and accurate CADs. To alleviate the limited availability of such datasets, lung nodule synthesis methods are proposed for the sake of data augmentation. Nevertheless, previous methods lack the ability to generate nodules that are realistic with the size attribute desired by the detector. To address this issue, we introduce a novel lung nodule synthesis framework in this paper, which decomposes nodule attributes into three main aspects including shape, size, and texture, respectively. A GAN-based Shape Generator firstly models nodule shapes by generating diverse shape masks. The following Size Modulation then enables quantitative control on the diameters of the generated nodule shapes in pixel-level granularity. A coarse-to-fine gated convolutional Texture Generator finally synthesizes visually plausible nodule textures conditioned on the modulated shape masks. Moreover, we propose to synthesize nodule CXR images by controlling the disentangled nodule attributes for data augmentation, in order to better compensate for the nodules that are easily missed in the detection task. Our experiments demonstrate the enhanced image quality, diversity, and controllability of the proposed lung nodule synthesis framework. We also validate the effectiveness of our data augmentation on greatly improving nodule detection performance.


Deep learning-based detection of intravenous contrast in computed tomography scans

Oct 19, 2021
Zezhong Ye, Jack M. Qian, Ahmed Hosny, Roman Zeleznik, Deborah Plana, Jirapat Likitlersuang, Zhongyi Zhang, Raymond H. Mak, Hugo J. W. L. Aerts, Benjamin H. Kann

Purpose: Identifying intravenous (IV) contrast use within CT scans is a key component of data curation for model development and testing. Currently, IV contrast is poorly documented in imaging metadata and necessitates manual correction and annotation by clinician experts, presenting a major barrier to imaging analyses and algorithm deployment. We sought to develop and validate a convolutional neural network (CNN)-based deep learning (DL) platform to identify IV contrast within CT scans. Methods: For model development and evaluation, we used independent datasets of CT scans of head, neck (HN) and lung cancer patients, totaling 133,480 axial 2D scan slices from 1,979 CT scans manually annotated for contrast presence by clinical experts. Five different DL models were adopted and trained in HN training datasets for slice-level contrast detection. Model performances were evaluated on a hold-out set and on an independent validation set from another institution. DL models was then fine-tuned on chest CT data and externally validated on a separate chest CT dataset. Results: Initial DICOM metadata tags for IV contrast were missing or erroneous in 1,496 scans (75.6%). The EfficientNetB4-based model showed the best overall detection performance. For HN scans, AUC was 0.996 in the internal validation set (n = 216) and 1.0 in the external validation set (n = 595). The fine-tuned model on chest CTs yielded an AUC: 1.0 for the internal validation set (n = 53), and AUC: 0.980 for the external validation set (n = 402). Conclusion: The DL model could accurately detect IV contrast in both HN and chest CT scans with near-perfect performance.


Deep Transfer Learning Methods for Colon Cancer Classification in Confocal Laser Microscopy Images

May 20, 2019
Nils Gessert, Marcel Bengs, Lukas Wittig, Daniel Drömann, Tobias Keck, Alexander Schlaefer, David B. Ellebrecht

Purpose: The gold standard for colorectal cancer metastases detection in the peritoneum is histological evaluation of a removed tissue sample. For feedback during interventions, real-time in-vivo imaging with confocal laser microscopy has been proposed for differentiation of benign and malignant tissue by manual expert evaluation. Automatic image classification could improve the surgical workflow further by providing immediate feedback. Methods: We analyze the feasibility of classifying tissue from confocal laser microscopy in the colon and peritoneum. For this purpose, we adopt both classical and state-of-the-art convolutional neural networks to directly learn from the images. As the available dataset is small, we investigate several transfer learning strategies including partial freezing variants and full fine-tuning. We address the distinction of different tissue types, as well as benign and malignant tissue. Results: We present a thorough analysis of transfer learning strategies for colorectal cancer with confocal laser microscopy. In the peritoneum, metastases are classified with an AUC of 97.1 and in the colon, the primarius is classified with an AUC of 73.1. In general, transfer learning substantially improves performance over training from scratch. We find that the optimal transfer learning strategy differs for models and classification tasks. Conclusions: We demonstrate that convolutional neural networks and transfer learning can be used to identify cancer tissue with confocal laser microscopy. We show that there is no generally optimal transfer learning strategy and model as well as task-specific engineering is required. Given the high performance for the peritoneum, even with a small dataset, application for intraoperative decision support could be feasible.

* Accepted for publication in the International Journal of Computer Assisted Radiology and Surgery (IJCARS) 

Weakly-supervised High-resolution Segmentation of Mammography Images for Breast Cancer Diagnosis

Jun 15, 2021
Kangning Liu, Yiqiu Shen, Nan Wu, Jakub Chłędowski, Carlos Fernandez-Granda, Krzysztof J. Geras

In the last few years, deep learning classifiers have shown promising results in image-based medical diagnosis. However, interpreting the outputs of these models remains a challenge. In cancer diagnosis, interpretability can be achieved by localizing the region of the input image responsible for the output, i.e. the location of a lesion. Alternatively, segmentation or detection models can be trained with pixel-wise annotations indicating the locations of malignant lesions. Unfortunately, acquiring such labels is labor-intensive and requires medical expertise. To overcome this difficulty, weakly-supervised localization can be utilized. These methods allow neural network classifiers to output saliency maps highlighting the regions of the input most relevant to the classification task (e.g. malignant lesions in mammograms) using only image-level labels (e.g. whether the patient has cancer or not) during training. When applied to high-resolution images, existing methods produce low-resolution saliency maps. This is problematic in applications in which suspicious lesions are small in relation to the image size. In this work, we introduce a novel neural network architecture to perform weakly-supervised segmentation of high-resolution images. The proposed model selects regions of interest via coarse-level localization, and then performs fine-grained segmentation of those regions. We apply this model to breast cancer diagnosis with screening mammography, and validate it on a large clinically-realistic dataset. Measured by Dice similarity score, our approach outperforms existing methods by a large margin in terms of localization performance of benign and malignant lesions, relatively improving the performance by 39.6% and 20.0%, respectively. Code and the weights of some of the models are available at

* The last two authors contributed equally. Accepted to Medical Imaging with Deep Learning (MIDL) 2021 

Did You Really Just Have a Heart Attack? Towards Robust Detection of Personal Health Mentions in Social Media

Mar 04, 2018
Payam Karisani, Eugene Agichtein

Millions of users share their experiences on social media sites, such as Twitter, which in turn generate valuable data for public health monitoring, digital epidemiology, and other analyses of population health at global scale. The first, critical, task for these applications is classifying whether a personal health event was mentioned, which we call the (PHM) problem. This task is challenging for many reasons, including typically short length of social media posts, inventive spelling and lexicons, and figurative language, including hyperbole using diseases like "heart attack" or "cancer" for emphasis, and not as a health self-report. This problem is even more challenging for rarely reported, or frequent but ambiguously expressed conditions, such as "stroke". To address this problem, we propose a general, robust method for detecting PHMs in social media, which we call WESPAD, that combines lexical, syntactic, word embedding-based, and context-based features. WESPAD is able to generalize from few examples by automatically distorting the word embedding space to most effectively detect the true health mentions. Unlike previously proposed state-of-the-art supervised and deep-learning techniques, WESPAD requires relatively little training data, which makes it possible to adapt, with minimal effort, to each new disease and condition. We evaluate WESPAD on both an established publicly available Flu detection benchmark, and on a new dataset that we have constructed with mentions of multiple health conditions. Our experiments show that WESPAD outperforms the baselines and state-of-the-art methods, especially in cases when the number and proportion of true health mentions in the training data is small.

* WWW 2018 

Automated soft tissue lesion detection and segmentation in digital mammography using a u-net deep learning network

Mar 08, 2018
Timothy de Moor, Alejandro Rodriguez-Ruiz, Albert Gubern Mérida, Ritse Mann, Jonas Teuwen

Computer-aided detection or decision support systems aim to improve breast cancer screening programs by helping radiologists to evaluate digital mammography (DM) exams. Commonly such methods proceed in two steps: selection of candidate regions for malignancy, and later classification as either malignant or not. In this study, we present a candidate detection method based on deep learning to automatically detect and additionally segment soft tissue lesions in DM. A database of DM exams (mostly bilateral and two views) was collected from our institutional archive. In total, 7196 DM exams (28294 DM images) acquired with systems from three different vendors (General Electric, Siemens, Hologic) were collected, of which 2883 contained malignant lesions verified with histopathology. Data was randomly split on an exam level into training (50\%), validation (10\%) and testing (40\%) of deep neural network with u-net architecture. The u-net classifies the image but also provides lesion segmentation. Free receiver operating characteristic (FROC) analysis was used to evaluate the model, on an image and on an exam level. On an image level, a maximum sensitivity of 0.94 at 7.93 false positives (FP) per image was achieved. Similarly, per exam a maximum sensitivity of 0.98 at 7.81 FP per image was achieved. In conclusion, the method could be used as a candidate selection model with high accuracy and with the additional information of lesion segmentation.

* To appear in IWBI 2018 

Real-time landmark detection for precise endoscopic submucosal dissection via shape-aware relation network

Nov 08, 2021
Jiacheng Wang, Yueming Jin, Shuntian Cai, Hongzhi Xu, Pheng-Ann Heng, Jing Qin, Liansheng Wang

We propose a novel shape-aware relation network for accurate and real-time landmark detection in endoscopic submucosal dissection (ESD) surgery. This task is of great clinical significance but extremely challenging due to bleeding, lighting reflection, and motion blur in the complicated surgical environment. Compared with existing solutions, which either neglect geometric relationships among targeting objects or capture the relationships by using complicated aggregation schemes, the proposed network is capable of achieving satisfactory accuracy while maintaining real-time performance by taking full advantage of the spatial relations among landmarks. We first devise an algorithm to automatically generate relation keypoint heatmaps, which are able to intuitively represent the prior knowledge of spatial relations among landmarks without using any extra manual annotation efforts. We then develop two complementary regularization schemes to progressively incorporate the prior knowledge into the training process. While one scheme introduces pixel-level regularization by multi-task learning, the other integrates global-level regularization by harnessing a newly designed grouped consistency evaluator, which adds relation constraints to the proposed network in an adversarial manner. Both schemes are beneficial to the model in training, and can be readily unloaded in inference to achieve real-time detection. We establish a large in-house dataset of ESD surgery for esophageal cancer to validate the effectiveness of our proposed method. Extensive experimental results demonstrate that our approach outperforms state-of-the-art methods in terms of accuracy and efficiency, achieving better detection results faster. Promising results on two downstream applications further corroborate the great potential of our method in ESD clinical practice.