Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"cancer detection": models, code, and papers

Deep learning-based detection of intravenous contrast in computed tomography scans

Oct 16, 2021
Zezhong Ye, Jack M. Qian, Ahmed Hosny, Roman Zeleznik, Deborah Plana, Jirapat Likitlersuang, Zhongyi Zhang, Raymond H. Mak, Hugo J. W. L. Aerts, Benjamin H. Kann

Purpose: Identifying intravenous (IV) contrast use within CT scans is a key component of data curation for model development and testing. Currently, IV contrast is poorly documented in imaging metadata and necessitates manual correction and annotation by clinician experts, presenting a major barrier to imaging analyses and algorithm deployment. We sought to develop and validate a convolutional neural network (CNN)-based deep learning (DL) platform to identify IV contrast within CT scans. Methods: For model development and evaluation, we used independent datasets of CT scans of head, neck (HN) and lung cancer patients, totaling 133,480 axial 2D scan slices from 1,979 CT scans manually annotated for contrast presence by clinical experts. Five different DL models were adopted and trained in HN training datasets for slice-level contrast detection. Model performances were evaluated on a hold-out set and on an independent validation set from another institution. DL models was then fine-tuned on chest CT data and externally validated on a separate chest CT dataset. Results: Initial DICOM metadata tags for IV contrast were missing or erroneous in 1,496 scans (75.6%). The EfficientNetB4-based model showed the best overall detection performance. For HN scans, AUC was 0.996 in the internal validation set (n = 216) and 1.0 in the external validation set (n = 595). The fine-tuned model on chest CTs yielded an AUC: 1.0 for the internal validation set (n = 53), and AUC: 0.980 for the external validation set (n = 402). Conclusion: The DL model could accurately detect IV contrast in both HN and chest CT scans with near-perfect performance.

Access Paper or Ask Questions

Deep Transfer Learning Methods for Colon Cancer Classification in Confocal Laser Microscopy Images

May 20, 2019
Nils Gessert, Marcel Bengs, Lukas Wittig, Daniel Drömann, Tobias Keck, Alexander Schlaefer, David B. Ellebrecht

Purpose: The gold standard for colorectal cancer metastases detection in the peritoneum is histological evaluation of a removed tissue sample. For feedback during interventions, real-time in-vivo imaging with confocal laser microscopy has been proposed for differentiation of benign and malignant tissue by manual expert evaluation. Automatic image classification could improve the surgical workflow further by providing immediate feedback. Methods: We analyze the feasibility of classifying tissue from confocal laser microscopy in the colon and peritoneum. For this purpose, we adopt both classical and state-of-the-art convolutional neural networks to directly learn from the images. As the available dataset is small, we investigate several transfer learning strategies including partial freezing variants and full fine-tuning. We address the distinction of different tissue types, as well as benign and malignant tissue. Results: We present a thorough analysis of transfer learning strategies for colorectal cancer with confocal laser microscopy. In the peritoneum, metastases are classified with an AUC of 97.1 and in the colon, the primarius is classified with an AUC of 73.1. In general, transfer learning substantially improves performance over training from scratch. We find that the optimal transfer learning strategy differs for models and classification tasks. Conclusions: We demonstrate that convolutional neural networks and transfer learning can be used to identify cancer tissue with confocal laser microscopy. We show that there is no generally optimal transfer learning strategy and model as well as task-specific engineering is required. Given the high performance for the peritoneum, even with a small dataset, application for intraoperative decision support could be feasible.

* Accepted for publication in the International Journal of Computer Assisted Radiology and Surgery (IJCARS) 
Access Paper or Ask Questions

Weakly-supervised High-resolution Segmentation of Mammography Images for Breast Cancer Diagnosis

Jun 15, 2021
Kangning Liu, Yiqiu Shen, Nan Wu, Jakub Chłędowski, Carlos Fernandez-Granda, Krzysztof J. Geras

In the last few years, deep learning classifiers have shown promising results in image-based medical diagnosis. However, interpreting the outputs of these models remains a challenge. In cancer diagnosis, interpretability can be achieved by localizing the region of the input image responsible for the output, i.e. the location of a lesion. Alternatively, segmentation or detection models can be trained with pixel-wise annotations indicating the locations of malignant lesions. Unfortunately, acquiring such labels is labor-intensive and requires medical expertise. To overcome this difficulty, weakly-supervised localization can be utilized. These methods allow neural network classifiers to output saliency maps highlighting the regions of the input most relevant to the classification task (e.g. malignant lesions in mammograms) using only image-level labels (e.g. whether the patient has cancer or not) during training. When applied to high-resolution images, existing methods produce low-resolution saliency maps. This is problematic in applications in which suspicious lesions are small in relation to the image size. In this work, we introduce a novel neural network architecture to perform weakly-supervised segmentation of high-resolution images. The proposed model selects regions of interest via coarse-level localization, and then performs fine-grained segmentation of those regions. We apply this model to breast cancer diagnosis with screening mammography, and validate it on a large clinically-realistic dataset. Measured by Dice similarity score, our approach outperforms existing methods by a large margin in terms of localization performance of benign and malignant lesions, relatively improving the performance by 39.6% and 20.0%, respectively. Code and the weights of some of the models are available at

* The last two authors contributed equally. Accepted to Medical Imaging with Deep Learning (MIDL) 2021 
Access Paper or Ask Questions

Did You Really Just Have a Heart Attack? Towards Robust Detection of Personal Health Mentions in Social Media

Mar 04, 2018
Payam Karisani, Eugene Agichtein

Millions of users share their experiences on social media sites, such as Twitter, which in turn generate valuable data for public health monitoring, digital epidemiology, and other analyses of population health at global scale. The first, critical, task for these applications is classifying whether a personal health event was mentioned, which we call the (PHM) problem. This task is challenging for many reasons, including typically short length of social media posts, inventive spelling and lexicons, and figurative language, including hyperbole using diseases like "heart attack" or "cancer" for emphasis, and not as a health self-report. This problem is even more challenging for rarely reported, or frequent but ambiguously expressed conditions, such as "stroke". To address this problem, we propose a general, robust method for detecting PHMs in social media, which we call WESPAD, that combines lexical, syntactic, word embedding-based, and context-based features. WESPAD is able to generalize from few examples by automatically distorting the word embedding space to most effectively detect the true health mentions. Unlike previously proposed state-of-the-art supervised and deep-learning techniques, WESPAD requires relatively little training data, which makes it possible to adapt, with minimal effort, to each new disease and condition. We evaluate WESPAD on both an established publicly available Flu detection benchmark, and on a new dataset that we have constructed with mentions of multiple health conditions. Our experiments show that WESPAD outperforms the baselines and state-of-the-art methods, especially in cases when the number and proportion of true health mentions in the training data is small.

* WWW 2018 
Access Paper or Ask Questions

Automated soft tissue lesion detection and segmentation in digital mammography using a u-net deep learning network

Mar 08, 2018
Timothy de Moor, Alejandro Rodriguez-Ruiz, Albert Gubern Mérida, Ritse Mann, Jonas Teuwen

Computer-aided detection or decision support systems aim to improve breast cancer screening programs by helping radiologists to evaluate digital mammography (DM) exams. Commonly such methods proceed in two steps: selection of candidate regions for malignancy, and later classification as either malignant or not. In this study, we present a candidate detection method based on deep learning to automatically detect and additionally segment soft tissue lesions in DM. A database of DM exams (mostly bilateral and two views) was collected from our institutional archive. In total, 7196 DM exams (28294 DM images) acquired with systems from three different vendors (General Electric, Siemens, Hologic) were collected, of which 2883 contained malignant lesions verified with histopathology. Data was randomly split on an exam level into training (50\%), validation (10\%) and testing (40\%) of deep neural network with u-net architecture. The u-net classifies the image but also provides lesion segmentation. Free receiver operating characteristic (FROC) analysis was used to evaluate the model, on an image and on an exam level. On an image level, a maximum sensitivity of 0.94 at 7.93 false positives (FP) per image was achieved. Similarly, per exam a maximum sensitivity of 0.98 at 7.81 FP per image was achieved. In conclusion, the method could be used as a candidate selection model with high accuracy and with the additional information of lesion segmentation.

* To appear in IWBI 2018 
Access Paper or Ask Questions

Real-time landmark detection for precise endoscopic submucosal dissection via shape-aware relation network

Nov 08, 2021
Jiacheng Wang, Yueming Jin, Shuntian Cai, Hongzhi Xu, Pheng-Ann Heng, Jing Qin, Liansheng Wang

We propose a novel shape-aware relation network for accurate and real-time landmark detection in endoscopic submucosal dissection (ESD) surgery. This task is of great clinical significance but extremely challenging due to bleeding, lighting reflection, and motion blur in the complicated surgical environment. Compared with existing solutions, which either neglect geometric relationships among targeting objects or capture the relationships by using complicated aggregation schemes, the proposed network is capable of achieving satisfactory accuracy while maintaining real-time performance by taking full advantage of the spatial relations among landmarks. We first devise an algorithm to automatically generate relation keypoint heatmaps, which are able to intuitively represent the prior knowledge of spatial relations among landmarks without using any extra manual annotation efforts. We then develop two complementary regularization schemes to progressively incorporate the prior knowledge into the training process. While one scheme introduces pixel-level regularization by multi-task learning, the other integrates global-level regularization by harnessing a newly designed grouped consistency evaluator, which adds relation constraints to the proposed network in an adversarial manner. Both schemes are beneficial to the model in training, and can be readily unloaded in inference to achieve real-time detection. We establish a large in-house dataset of ESD surgery for esophageal cancer to validate the effectiveness of our proposed method. Extensive experimental results demonstrate that our approach outperforms state-of-the-art methods in terms of accuracy and efficiency, achieving better detection results faster. Promising results on two downstream applications further corroborate the great potential of our method in ESD clinical practice.

Access Paper or Ask Questions

Lymph Node Gross Tumor Volume Detection and Segmentation via Distance-based Gating using 3D CT/PET Imaging in Radiotherapy

Aug 27, 2020
Zhuotun Zhu, Dakai Jin, Ke Yan, Tsung-Ying Ho, Xianghua Ye, Dazhou Guo, Chun-Hung Chao, Jing Xiao, Alan Yuille, Le Lu

Finding, identifying and segmenting suspicious cancer metastasized lymph nodes from 3D multi-modality imaging is a clinical task of paramount importance. In radiotherapy, they are referred to as Lymph Node Gross Tumor Volume (GTVLN). Determining and delineating the spread of GTVLN is essential in defining the corresponding resection and irradiating regions for the downstream workflows of surgical resection and radiotherapy of various cancers. In this work, we propose an effective distance-based gating approach to simulate and simplify the high-level reasoning protocols conducted by radiation oncologists, in a divide-and-conquer manner. GTVLN is divided into two subgroups of tumor-proximal and tumor-distal, respectively, by means of binary or soft distance gating. This is motivated by the observation that each category can have distinct though overlapping distributions of appearance, size and other LN characteristics. A novel multi-branch detection-by-segmentation network is trained with each branch specializing on learning one GTVLN category features, and outputs from multi-branch are fused in inference. The proposed method is evaluated on an in-house dataset of $141$ esophageal cancer patients with both PET and CT imaging modalities. Our results validate significant improvements on the mean recall from $72.5\%$ to $78.2\%$, as compared to previous state-of-the-art work. The highest achieved GTVLN recall of $82.5\%$ at $20\%$ precision is clinically relevant and valuable since human observers tend to have low sensitivity (around $80\%$ for the most experienced radiation oncologists, as reported by literature).

* MICCAI2020 
Access Paper or Ask Questions

An Improved Deep Convolutional Neural Network by Using Hybrid Optimization Algorithms to Detect and Classify Brain Tumor Using Augmented MRI Images

Jun 08, 2022
Shko M. Qader, Bryar A. Hassan, Tarik A. Rashid

Automated brain tumor detection is becoming a highly considerable medical diagnosis research. In recent medical diagnoses, detection and classification are highly considered to employ machine learning and deep learning techniques. Nevertheless, the accuracy and performance of current models need to be improved for suitable treatments. In this paper, an improvement in deep convolutional learning is ensured by adopting enhanced optimization algorithms, Thus, Deep Convolutional Neural Network (DCNN) based on improved Harris Hawks Optimization (HHO), called G-HHO has been considered. This hybridization features Grey Wolf Optimization (GWO) and HHO to give better results, limiting the convergence rate and enhancing performance. Moreover, Otsu thresholding is adopted to segment the tumor portion that emphasizes brain tumor detection. Experimental studies are conducted to validate the performance of the suggested method on a total number of 2073 augmented MRI images. The technique's performance was ensured by comparing it with the nine existing algorithms on huge augmented MRI images in terms of accuracy, precision, recall, f-measure, execution time, and memory usage. The performance comparison shows that the DCNN-G-HHO is much more successful than existing methods, especially on a scoring accuracy of 97%. Additionally, the statistical performance analysis indicates that the suggested approach is faster and utilizes less memory at identifying and categorizing brain tumor cancers on the MR images. The implementation of this validation is conducted on the Python platform. The relevant codes for the proposed approach are available at:

* Multimed Tools Appl (2022) 
Access Paper or Ask Questions

Applying a random projection algorithm to optimize machine learning model for predicting peritoneal metastasis in gastric cancer patients using CT images

Sep 01, 2020
Seyedehnafiseh Mirniaharikandehei, Morteza Heidari, Gopichandh Danala, Sivaramakrishnan Lakshmivarahan, Bin Zheng

Background and Objective: Non-invasively predicting the risk of cancer metastasis before surgery plays an essential role in determining optimal treatment methods for cancer patients (including who can benefit from neoadjuvant chemotherapy). Although developing radiomics based machine learning (ML) models has attracted broad research interest for this purpose, it often faces a challenge of how to build a highly performed and robust ML model using small and imbalanced image datasets. Methods: In this study, we explore a new approach to build an optimal ML model. A retrospective dataset involving abdominal computed tomography (CT) images acquired from 159 patients diagnosed with gastric cancer is assembled. Among them, 121 cases have peritoneal metastasis (PM), while 38 cases do not have PM. A computer-aided detection (CAD) scheme is first applied to segment primary gastric tumor volumes and initially computes 315 image features. Then, two Gradient Boosting Machine (GBM) models embedded with two different feature dimensionality reduction methods, namely, the principal component analysis (PCA) and a random projection algorithm (RPA) and a synthetic minority oversampling technique, are built to predict the risk of the patients having PM. All GBM models are trained and tested using a leave-one-case-out cross-validation method. Results: Results show that the GBM embedded with RPA yielded a significantly higher prediction accuracy (71.2%) than using PCA (65.2%) (p<0.05). Conclusions: The study demonstrated that CT images of the primary gastric tumors contain discriminatory information to predict the risk of PM, and RPA is a promising method to generate optimal feature vector, improving the performance of ML models of medical images.

* 24 pages, 7 figures 
Access Paper or Ask Questions

Dectecting Invasive Ductal Carcinoma with Semi-Supervised Conditional GANs

Nov 14, 2019
Jeremiah W. Johnson

Invasive ductal carcinoma (IDC) comprises nearly 80% of all breast cancers. The detection of IDC is a necessary preprocessing step in determining the aggressiveness of the cancer, determining treatment protocols, and predicting patient outcomes, and is usually performed manually by an expert pathologist. Here, we describe a novel algorithm for automatically detecting IDC using semi-supervised conditional generative adversarial networks (cGANs). The framework is simple and effective at improving scores on a range of metrics over a baseline CNN.

* 5 pages, 3 figures 
Access Paper or Ask Questions