Alert button

"cancer detection": models, code, and papers
Alert button

ProstAttention-Net: A deep attention model for prostate cancer segmentation by aggressiveness in MRI scans

Add code
Bookmark button
Alert button
Nov 23, 2022
Audrey Duran, Gaspard Dussert, Olivier Rouvière, Tristan Jaouen, Pierre-Marc Jodoin, Carole Lartizien

Figure 1 for ProstAttention-Net: A deep attention model for prostate cancer segmentation by aggressiveness in MRI scans
Figure 2 for ProstAttention-Net: A deep attention model for prostate cancer segmentation by aggressiveness in MRI scans
Figure 3 for ProstAttention-Net: A deep attention model for prostate cancer segmentation by aggressiveness in MRI scans
Figure 4 for ProstAttention-Net: A deep attention model for prostate cancer segmentation by aggressiveness in MRI scans
Viaarxiv icon

A Comparative Study of Gastric Histopathology Sub-size Image Classification: from Linear Regression to Visual Transformer

May 25, 2022
Weiming Hu, Haoyuan Chen, Wanli Liu, Xiaoyan Li, Hongzan Sun, Xinyu Huang, Marcin Grzegorzek, Chen Li

Figure 1 for A Comparative Study of Gastric Histopathology Sub-size Image Classification: from Linear Regression to Visual Transformer
Figure 2 for A Comparative Study of Gastric Histopathology Sub-size Image Classification: from Linear Regression to Visual Transformer
Figure 3 for A Comparative Study of Gastric Histopathology Sub-size Image Classification: from Linear Regression to Visual Transformer
Figure 4 for A Comparative Study of Gastric Histopathology Sub-size Image Classification: from Linear Regression to Visual Transformer
Viaarxiv icon

Towards Confident Detection of Prostate Cancer using High Resolution Micro-ultrasound

Jul 21, 2022
Mahdi Gilany, Paul Wilson, Amoon Jamzad, Fahimeh Fooladgar, Minh Nguyen Nhat To, Brian Wodlinger, Purang Abolmaesumi, Parvin Mousavi

Figure 1 for Towards Confident Detection of Prostate Cancer using High Resolution Micro-ultrasound
Figure 2 for Towards Confident Detection of Prostate Cancer using High Resolution Micro-ultrasound
Figure 3 for Towards Confident Detection of Prostate Cancer using High Resolution Micro-ultrasound
Figure 4 for Towards Confident Detection of Prostate Cancer using High Resolution Micro-ultrasound
Viaarxiv icon

Cell nuclei classification in histopathological images using hybrid OLConvNet

Feb 21, 2022
Suvidha Tripathi, Satish Kumar Singh

Figure 1 for Cell nuclei classification in histopathological images using hybrid OLConvNet
Figure 2 for Cell nuclei classification in histopathological images using hybrid OLConvNet
Figure 3 for Cell nuclei classification in histopathological images using hybrid OLConvNet
Figure 4 for Cell nuclei classification in histopathological images using hybrid OLConvNet
Viaarxiv icon

Discovery Radiomics via Deep Multi-Column Radiomic Sequencers for Skin Cancer Detection

Sep 24, 2017
Mohammad Javad Shafiee, Alexander Wong

Figure 1 for Discovery Radiomics via Deep Multi-Column Radiomic Sequencers for Skin Cancer Detection
Figure 2 for Discovery Radiomics via Deep Multi-Column Radiomic Sequencers for Skin Cancer Detection
Figure 3 for Discovery Radiomics via Deep Multi-Column Radiomic Sequencers for Skin Cancer Detection
Viaarxiv icon

Region of Interest Detection in Melanocytic Skin Tumor Whole Slide Images

Add code
Bookmark button
Alert button
Oct 29, 2022
Yi Cui, Yao Li, Jayson R. Miedema, Sherif Farag, J. S. Marron, Nancy E. Thomas

Figure 1 for Region of Interest Detection in Melanocytic Skin Tumor Whole Slide Images
Figure 2 for Region of Interest Detection in Melanocytic Skin Tumor Whole Slide Images
Figure 3 for Region of Interest Detection in Melanocytic Skin Tumor Whole Slide Images
Figure 4 for Region of Interest Detection in Melanocytic Skin Tumor Whole Slide Images
Viaarxiv icon

Predicting Real-time Scientific Experiments Using Transformer models and Reinforcement Learning

Add code
Bookmark button
Alert button
Apr 25, 2022
Juan Manuel Parrilla-Gutierrez

Figure 1 for Predicting Real-time Scientific Experiments Using Transformer models and Reinforcement Learning
Figure 2 for Predicting Real-time Scientific Experiments Using Transformer models and Reinforcement Learning
Figure 3 for Predicting Real-time Scientific Experiments Using Transformer models and Reinforcement Learning
Figure 4 for Predicting Real-time Scientific Experiments Using Transformer models and Reinforcement Learning
Viaarxiv icon

Federated Learning Enables Big Data for Rare Cancer Boundary Detection

Add code
Bookmark button
Alert button
Apr 25, 2022
Sarthak Pati, Ujjwal Baid, Brandon Edwards, Micah Sheller, Shih-Han Wang, G Anthony Reina, Patrick Foley, Alexey Gruzdev, Deepthi Karkada, Christos Davatzikos, Chiharu Sako, Satyam Ghodasara, Michel Bilello, Suyash Mohan, Philipp Vollmuth, Gianluca Brugnara, Chandrakanth J Preetha, Felix Sahm, Klaus Maier-Hein, Maximilian Zenk, Martin Bendszus, Wolfgang Wick, Evan Calabrese, Jeffrey Rudie, Javier Villanueva-Meyer, Soonmee Cha, Madhura Ingalhalikar, Manali Jadhav, Umang Pandey, Jitender Saini, John Garrett, Matthew Larson, Robert Jeraj, Stuart Currie, Russell Frood, Kavi Fatania, Raymond Y Huang, Ken Chang, Carmen Balana, Jaume Capellades, Josep Puig, Johannes Trenkler, Josef Pichler, Georg Necker, Andreas Haunschmidt, Stephan Meckel, Gaurav Shukla, Spencer Liem, Gregory S Alexander, Joseph Lombardo, Joshua D Palmer, Adam E Flanders, Adam P Dicker, Haris I Sair, Craig K Jones, Archana Venkataraman, Meirui Jiang, Tiffany Y So, Cheng Chen, Pheng Ann Heng, Qi Dou, Michal Kozubek, Filip Lux, Jan Michálek, Petr Matula, Miloš Keřkovský, Tereza Kopřivová, Marek Dostál, Václav Vybíhal, Michael A Vogelbaum, J Ross Mitchell, Joaquim Farinhas, Joseph A Maldjian, Chandan Ganesh Bangalore Yogananda, Marco C Pinho, Divya Reddy, James Holcomb, Benjamin C Wagner, Benjamin M Ellingson, Timothy F Cloughesy, Catalina Raymond, Talia Oughourlian, Akifumi Hagiwara, Chencai Wang, Minh-Son To, Sargam Bhardwaj, Chee Chong, Marc Agzarian, Alexandre Xavier Falcão, Samuel B Martins, Bernardo C A Teixeira, Flávia Sprenger, David Menotti, Diego R Lucio, Pamela LaMontagne, Daniel Marcus, Benedikt Wiestler, Florian Kofler, Ivan Ezhov, Marie Metz, Rajan Jain, Matthew Lee, Yvonne W Lui, Richard McKinley, Johannes Slotboom, Piotr Radojewski, Raphael Meier, Roland Wiest, Derrick Murcia, Eric Fu, Rourke Haas, John Thompson, David Ryan Ormond, Chaitra Badve, Andrew E Sloan, Vachan Vadmal, Kristin Waite, Rivka R Colen, Linmin Pei, Murat Ak, Ashok Srinivasan, J Rajiv Bapuraj, Arvind Rao, Nicholas Wang, Ota Yoshiaki, Toshio Moritani, Sevcan Turk, Joonsang Lee, Snehal Prabhudesai, Fanny Morón, Jacob Mandel, Konstantinos Kamnitsas, Ben Glocker, Luke V M Dixon, Matthew Williams, Peter Zampakis, Vasileios Panagiotopoulos, Panagiotis Tsiganos, Sotiris Alexiou, Ilias Haliassos, Evangelia I Zacharaki, Konstantinos Moustakas, Christina Kalogeropoulou, Dimitrios M Kardamakis, Yoon Seong Choi, Seung-Koo Lee, Jong Hee Chang, Sung Soo Ahn, Bing Luo, Laila Poisson, Ning Wen, Pallavi Tiwari, Ruchika Verma, Rohan Bareja, Ipsa Yadav, Jonathan Chen, Neeraj Kumar, Marion Smits, Sebastian R van der Voort, Ahmed Alafandi, Fatih Incekara, Maarten MJ Wijnenga, Georgios Kapsas, Renske Gahrmann, Joost W Schouten, Hendrikus J Dubbink, Arnaud JPE Vincent, Martin J van den Bent, Pim J French, Stefan Klein, Yading Yuan, Sonam Sharma, Tzu-Chi Tseng, Saba Adabi, Simone P Niclou, Olivier Keunen, Ann-Christin Hau, Martin Vallières, David Fortin, Martin Lepage, Bennett Landman, Karthik Ramadass, Kaiwen Xu, Silky Chotai, Lola B Chambless, Akshitkumar Mistry, Reid C Thompson, Yuriy Gusev, Krithika Bhuvaneshwar, Anousheh Sayah, Camelia Bencheqroun, Anas Belouali, Subha Madhavan, Thomas C Booth, Alysha Chelliah, Marc Modat, Haris Shuaib, Carmen Dragos, Aly Abayazeed, Kenneth Kolodziej, Michael Hill, Ahmed Abbassy, Shady Gamal, Mahmoud Mekhaimar, Mohamed Qayati, Mauricio Reyes, Ji Eun Park, Jihye Yun, Ho Sung Kim, Abhishek Mahajan, Mark Muzi, Sean Benson, Regina G H Beets-Tan, Jonas Teuwen, Alejandro Herrera-Trujillo, Maria Trujillo, William Escobar, Ana Abello, Jose Bernal, Jhon Gómez, Joseph Choi, Stephen Baek, Yusung Kim, Heba Ismael, Bryan Allen, John M Buatti, Aikaterini Kotrotsou, Hongwei Li, Tobias Weiss, Michael Weller, Andrea Bink, Bertrand Pouymayou, Hassan F Shaykh, Joel Saltz, Prateek Prasanna, Sampurna Shrestha, Kartik M Mani, David Payne, Tahsin Kurc, Enrique Pelaez, Heydy Franco-Maldonado, Francis Loayza, Sebastian Quevedo, Pamela Guevara, Esteban Torche, Cristobal Mendoza, Franco Vera, Elvis Ríos, Eduardo López, Sergio A Velastin, Godwin Ogbole, Dotun Oyekunle, Olubunmi Odafe-Oyibotha, Babatunde Osobu, Mustapha Shu'aibu, Adeleye Dorcas, Mayowa Soneye, Farouk Dako, Amber L Simpson, Mohammad Hamghalam, Jacob J Peoples, Ricky Hu, Anh Tran, Danielle Cutler, Fabio Y Moraes, Michael A Boss, James Gimpel, Deepak Kattil Veettil, Kendall Schmidt, Brian Bialecki, Sailaja Marella, Cynthia Price, Lisa Cimino, Charles Apgar, Prashant Shah, Bjoern Menze, Jill S Barnholtz-Sloan, Jason Martin, Spyridon Bakas

Viaarxiv icon

Scalable privacy-preserving cancer type prediction with homomorphic encryption

Apr 12, 2022
Esha Sarkar, Eduardo Chielle, Gamze Gursoy, Leo Chen, Mark Gerstein, Michail Maniatakos

Figure 1 for Scalable privacy-preserving cancer type prediction with homomorphic encryption
Figure 2 for Scalable privacy-preserving cancer type prediction with homomorphic encryption
Figure 3 for Scalable privacy-preserving cancer type prediction with homomorphic encryption
Figure 4 for Scalable privacy-preserving cancer type prediction with homomorphic encryption
Viaarxiv icon

Pit-Pattern Classification of Colorectal Cancer Polyps Using a Hyper Sensitive Vision-Based Tactile Sensor and Dilated Residual Networks

Nov 13, 2022
Nethra Venkatayogi, Qin Hu, Ozdemir Can Kara, Tarunraj G. Mohanraj, S. Farokh Atashzar, Farshid Alambeigi

Figure 1 for Pit-Pattern Classification of Colorectal Cancer Polyps Using a Hyper Sensitive Vision-Based Tactile Sensor and Dilated Residual Networks
Figure 2 for Pit-Pattern Classification of Colorectal Cancer Polyps Using a Hyper Sensitive Vision-Based Tactile Sensor and Dilated Residual Networks
Figure 3 for Pit-Pattern Classification of Colorectal Cancer Polyps Using a Hyper Sensitive Vision-Based Tactile Sensor and Dilated Residual Networks
Figure 4 for Pit-Pattern Classification of Colorectal Cancer Polyps Using a Hyper Sensitive Vision-Based Tactile Sensor and Dilated Residual Networks
Viaarxiv icon