Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"autonomous cars": models, code, and papers

Learning Less is More - 6D Camera Localization via 3D Surface Regression

Mar 27, 2018
Eric Brachmann, Carsten Rother

Popular research areas like autonomous driving and augmented reality have renewed the interest in image-based camera localization. In this work, we address the task of predicting the 6D camera pose from a single RGB image in a given 3D environment. With the advent of neural networks, previous works have either learned the entire camera localization process, or multiple components of a camera localization pipeline. Our key contribution is to demonstrate and explain that learning a single component of this pipeline is sufficient. This component is a fully convolutional neural network for densely regressing so-called scene coordinates, defining the correspondence between the input image and the 3D scene space. The neural network is prepended to a new end-to-end trainable pipeline. Our system is efficient, highly accurate, robust in training, and exhibits outstanding generalization capabilities. It exceeds state-of-the-art consistently on indoor and outdoor datasets. Interestingly, our approach surpasses existing techniques even without utilizing a 3D model of the scene during training, since the network is able to discover 3D scene geometry automatically, solely from single-view constraints.

* CVPR 2018 
  

Increasing the Robustness of Semantic Segmentation Models with Painting-by-Numbers

Oct 12, 2020
Christoph Kamann, Burkhard Güssefeld, Robin Hutmacher, Jan Hendrik Metzen, Carsten Rother

For safety-critical applications such as autonomous driving, CNNs have to be robust with respect to unavoidable image corruptions, such as image noise. While previous works addressed the task of robust prediction in the context of full-image classification, we consider it for dense semantic segmentation. We build upon an insight from image classification that output robustness can be improved by increasing the network-bias towards object shapes. We present a new training schema that increases this shape bias. Our basic idea is to alpha-blend a portion of the RGB training images with faked images, where each class-label is given a fixed, randomly chosen color that is not likely to appear in real imagery. This forces the network to rely more strongly on shape cues. We call this data augmentation technique ``Painting-by-Numbers''. We demonstrate the effectiveness of our training schema for DeepLabv3+ with various network backbones, MobileNet-V2, ResNets, and Xception, and evaluate it on the Cityscapes dataset. With respect to our 16 different types of image corruptions and 5 different network backbones, we are in 74% better than training with clean data. For cases where we are worse than a model trained without our training schema, it is mostly only marginally worse. However, for some image corruptions such as images with noise, we see a considerable performance gain of up to 25%.

  

CyRes -- Avoiding Catastrophic Failure in Connected and Autonomous Vehicles (Extended Abstract)

Jul 03, 2020
Carsten Maple, Peter Davies, Kerstin Eder, Chris Hankin, Greg Chance, Gregory Epiphaniou

Existing approaches to cyber security and regulation in the automotive sector cannot achieve the quality of outcome necessary to ensure the safe mass deployment of advanced vehicle technologies and smart mobility systems. Without sustainable resilience hard-fought public trust will evaporate, derailing emerging global initiatives to improve the efficiency, safety and environmental impact of future transport. This paper introduces an operational cyber resilience methodology, CyRes, that is suitable for standardisation. The CyRes methodology itself is capable of being tested in court or by publicly appointed regulators. It is designed so that operators understand what evidence should be produced by it and are able to measure the quality of that evidence. The evidence produced is capable of being tested in court or by publicly appointed regulators. Thus, the real-world system to which the CyRes methodology has been applied is capable of operating at all times and in all places with a legally and socially acceptable value of negative consequence.

* 7 pages, extended abstract 
  
<<
41
42
43
44
45
46
47